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摘要

量子密鑰分發 (quantum key distribution, QKD)是一種不需任何計算

性假設 (computational assumption)即可使通訊雙方擁有相同且安全的

私鑰的密碼學演算法。雖然 BB84為最早提出的 QKD協定，但它容

易實作，且與 decoy-method搭配之下，目前仍是實務上可安全使用的

QKD協定。

在本論文中，我們針對 BB84協定做了完整的安全性證明。一個完

整的安全性證明，應包含「定義」、「假設」、「數學證明」三個部份。

本論文對於安全性定義給予完整的介紹，並詳細分析所有證明當中所

用到的假設，最後證明 BB84協定在假設之下可以滿足安全性定義。

此外，除了少數證明與 QKD沒有直接關聯的數學定理之外，安全性

證明的每一個步驟均有解釋，而非直接引用其它論文的結果。對於剛

接觸 QKD的學生，或是其它領域的研究者而言，本論文能作為認識

QKD安全性證明的入門磚及參考。

本篇使用的證明手法主要根基於 [SP00]與 [Koa09]兩篇論文。首

先，我們利用 [SP00] 所提出的方法，將 BB84 協定的安全性化約

(reduce)至糾纏態粹取協定上，並使用錯誤更正碼來描述協定過程。接

著，再使用 [Koa09]當中使用的技巧，利用不確定性原理 (uncertainty

principle)來分析糾纏態粹取協定的安全性。證明過程中，我們在兩個

地方做出改良。第一，[SP00]當中的化約過程是利用兩協定的「等價」

關係來論證。在本論文中，我們利用當代密碼學中 indistinguishable

game的方式嚴謹定義「等價」這個概念。本論文實際將該定義應用在

安全性證明當中，並針對化約過程中的參數損失給予嚴謹的分析。第
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二，Koashi的證明 [Koa09]要求通訊雙方在後處理 (post-processing)的

通訊上需使用單次密碼本 (one-time pad)加密。本論文證明即使雙方在

後處理的通訊保持公開，BB84協定仍然安全。

關鍵字： 量子密鑰分發、安全性證明、BB84
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Abstract

Quantum key distribution (QKD) allows two parties to have a shared se-

cret key without relying on any computational assumption. While BB84 is

the oldest QKD protocol, it is easy to implement and compatible with decoy-

method, which makes it secure in the practical world.

In this thesis, we give a complete and self-contained security proof of

BB84 protocol. By complete, we mean that we give a comprehensive intro-

duction to all the building blocks of a security proof. We recall the formal

security definition of QKD, analyze all the necesary assumptions and give a

proof to show that BB84 attains the security definition. By self-contained, we

mean that we analyze the security of BB84 step-by-step without outsourcing

to other papers, except some mathematical facts whose proofs are not directly

related to the main context. We believe that our treatment makes it easier to

understand the security proof of QKD, especially for students and researchers

from different backgrounds.

Our work combines the proofs in [SP00] and [Koa09]. We reduce the se-

curity of BB84 to an entanglement-based protocol and describe the protocol

by error correction codes, which were introduced in [SP00]. Then, we ana-

lyze the security of the entanglement-based protocol by uncertainty principle,

which is the essential part of the proof in [Koa09]. Along the proof, we make

two improvements. First, in [SP00], the reduction is argued by the “equiv-

alence” between two protocols. We formulate the notion of equivalence by

an indistinguishable game, which fits the language of modern cryptography.
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We apply the new definition of equivalence to the proof and analyze the pa-

rameter loss in the reduction. Second, the proof in [Koa09] requires that the

post-processing in the BB84 protocol must be encrypted by one-time pad.

We remove this requirement and show that BB84 remains secure if the post-

processing is done in public.

Keywords: Quantum Key Distribution, Security Proof, BB84
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Chapter 1

Introduction

1.1 Key Distribution

In many cryptographic applications, we need the involved parties to establish a shared

secret key in the beginning. For example, to send a confidential message over the internet,

we may encrypt it by AES-128. In order to do it, we need the sender and the receiver to

have 128 secret bits beforehand, so they run a key distribution protocol before AES-128.

However, Peter Shor [Sho94] showed that the discrete logarithm over natural numbers and

the factoring problem can be solved by a quantum computer in polynomial-time. Later

on, Proos and Zalka [PZ03] showed that the the discrete logarithms problem over elliptic

curves can also be solved by a quantum computer efficiently. Consequently, most of the

key distribution protocols we use nowadays, such as RSA, Diffie-Hellman key exchange,

ECDH, are vulnerable if large-scaled quantum computers are built.

Post-quantum cryptography is a research field studying classical1 cryptographic al-

gorithms that resist the adversaries with quantum power. The development of quantum

computers motivates the National Institute of Standards and Technology (NIST) in the US

to start the standardization of post-quantum cryptography. The standardization includes

digital signature, public-key encryption, and key-establishment algorithms. The drafts

come all over the world and the submission deadline was on November 30, 2017. All the

1In this thesis, classical refers to not quantum.
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candidates will be examinated in 3 to 5 years before the final standard is chosen.2

1.2 Quantum Key Distribution

On the other side, the power of quantumness allows us to make a stronger cryptographic

primitive. Quantum key distribution (QKD) allows two parties to have a shared secret key

without relying on any computational assumption, which is also resistent to the quantum

adversaries.

The first QKD protocol was proposed by Bennett and Brassard [BB84], which is now

called “BB84 protocol.” The first implementation of BB84 was demonstrated by Bennett

et.al.[BBB+92]. After BB84, various protocols were proposed [Ben92, BBM92] while

the security of them all rely on a perfect single photon source, which is not pragmatic for

implementation. To deal with this problem, the decoy-state protocol [Hwa03, LMC05]

provides a way to monitor the disturbance of the adversaries under the assumption that

the source is a coherent state.

To have the security, all the protocols above still need an assumption that the sources

and the detectors work ideally. However, several attacks [ZFQ+08, LWW+10] showed

that the detectors at the receiver side could be vulnerable. Measurement device indepen-

dent (MDI) QKD [LCQ12] allows two parties to have a secure key even all the detectors

are controlled by the adversaries. Can we go a further step by removing the assumption

about the sources? The answer is yes. Device independent (DI) QKD [MY98, VV14]

removes even the assumption about the source3.

Although DI-QKD still stays in theoretical works and has no implementation so far,

some protocols are becoming mature for applications. In the academic side, it was demon-

strated that the transmitting distance can be achieved at 404 km byMDI-QKD [YCY+16].

Commercially, many companies 4 such as IDQuantique,MagiQ,QuintessenceLabs, Toshiba,

2The details and all the candidates can be found at the official website:
?iiTb,ff+b`+XMBbiX;QpfS`QD2+ibfSQbi@Zm�MimK@*`vTiQ;`�T?v

3Comparing to MDI-QKD, DI-QKD needs extra assumptions that two parties are spatially isolated and
detectors do not leak the information.

4?iiTb,ff2MXrBFBT2/B�XQ`;frBFBfGBbinQ7n+QKT�MB2bnBMpQHp2/nBMn[m�MimKn+QKTmiBM;nQ`n
+QKKmMB+�iBQMO+Bi2nMQi2@9e

2

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://en.wikipedia.org/wiki/List_of_companies_involved_in_quantum_computing_or_communication#cite_note-46
https://en.wikipedia.org/wiki/List_of_companies_involved_in_quantum_computing_or_communication#cite_note-46
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and so on, devote in the development of QKD by using decoy-BB84 or coherent one-way,

etc. CLAVIS3 made by ID Quantique achieves 3 kbit/s for 50 km [IDQ15] and Toshiba

claims that they have a prototype achieving 13.7 Mbit/s for 10 km5.

In addition, QKD networks, which allow distributing secret keys between financial,

military and government units, have been built in many countries, such as USA [ECP+05],

Vienna [PPA+09], Japan [SFI+11] and South Africa [MP10]. In 2016, the longest QKD

network, China Quantum Secure Backbone Project, is completed. It connects 32 trusted

nodes from Beijing to Shanghai and the total length of the fiber is up to 2000 kilometers.

Distance is the main issue of the fiber QKD. In 2016, China launched the first QKD

satellite, Micius. It successfully delivered entangled photons over 1200km [YCL+17]

and conducted a decoy QKD protocol with key rate 1.1 kbit/s [LCL+17]. There are many

QKD satellite projects are in preparation [BAL17].

To sum up, while quantum computers are still far from practical use, QKD has become

a feasible solution to key distribution. In the next section, we discuss another important

issue of QKD: the security proof.

1.3 Security Proof

What is the security proof? And why is it important? In Katz and Lindell’s book [KL14],

they give a vivid description of the age without security proofs.

Constructing good codes, or breaking existing ones, relied on creativity and

a developed sense of how codes work. There was little theory to rely on and,

for a long time, no working definition of what constitutes a good code. (page

1.)

Schemes were designed in an ad hoc manner and evaluated based on their

perceived complexity or cleverness. A scheme would be analyzed to see if any

attacks could be found; if so, the scheme would be“patched”to thwart that

attack, and the process repeated. Although there may have been agreement
5?iiTb,ffrrrXiQb?B#�X+QXDTf�#QmifT`2bbfkyRdnyNfT`R8yRX?iK

3

https://www.toshiba.co.jp/about/press/2017_09/pr1501.htm
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that some schemes were not secure (as evidenced by an especially damaging

attack), there was no agreed-upon notion of what requirements a“secure”

scheme should satisfy, and no way to give evidence that any specific scheme

was secure. (page 16.)

Throughout history, many ciphers that are conceived to be safe are ultimately broken,

including the famous Nazi cipher, Enigma, in the world war two. It was not until 1980s

that the cryptographers finally pinned down the notion of a security proof.

A complete security proof consists of definitions, assumptions andmathematical proofs.

The formal definitions characterize what secure means and what a cryptographic primitive

should achieve. Then, most of the cryptographic primitives rely on some mathematical

hard problems or some environment factors. All the assumptions about these problems

or factors should be clarify. Finally, a rigorous mathematical proof gives an unbreakable

guarantee that no attack will succeedwith respect to the given definitions and assumptions.

To formally define the security of QKD and to give a proof are not easy tasks. Al-

thogh the first QKD protocol was proposed in 1984 [BB84], it has no security proof until

Mayers gave one in 1996 [May96]. The precise security definition even came later. In the

early development of QKD, the security was defined in terms of the mutual information,

which does not guarantee the security against the general attack [KRBM07].6 The correct

definition, composable security, was proposed in [BOHL+05, RK05], which is stated in

terms of trace distance. Fortunately, the early proofs that give a tight bound on Fidelity

can be extended to the composable security easily.

To date, the security of BB84 protocol has been discussed by many papers from dif-

ferent aspects. As pointed out in [SBPC+09], there are three main techniques to prove the

security of QKD.

1. By uncertainty principle. The technique was proposed byMayers in his first proof

[May96]. Later on, Mayers’ proof was simplfied by Koashi and Preskill [KP03,

Koa05]. Finally, the proof was extended to the composable security by Koashi

[Koa09].
6The detailed discussion is in Section 3.1.

4
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2. By entanglement distillation. Lo and Chau [LC99] proposed a new QKD proto-

col based entanglement distillation and showed its security. Then, Shor and Preskill

[SP00] showed that BB84 is secure if and only if the entanglement distillation proto-

col (EDP) is secure. This technique is so powerful that it is adopted in many proofs

for different protocols [GLLP04, LMC05, LCQ12].

3. By entropic relations. Renner [Ren05] introduced the notion of smoothmin-entropy

and max-entropy and gave a security proof for BB84 protocol by using entropic ar-

guement and quantum version of de Finetti’s theorem. Tomamichel and Leverrier

[TL17] gave a self-contained review for this kind of technique.

1.4 Contributions

The main contribution of this thesis is that we give a complete and self-contained security

proof of BB84 protocol. By complete, wemean that we give a comprehensive introduction

to all the building blocks of a security proof. We recall the formal security definition of

QKD and some related properties in Section 3.1. We discuss all the necesary assumptions

in Section 3.3. In Chapter 4, we give a complete security proof to show that BB84 attains

the security definition.

By self-contained, we mean that we analyze the security of BB84 step-by-step without

outsourcing to other papers, except some mathematical facts whose proofs are not directly

relate to themain context. We only assume that the readers are familiar with basic quantum

information. We believe that our treatment can make it easier to understand the security

proof of QKD, especially for the students and the researchers from different backgrounds.

Along the proof, we make two little improvements. First, we formally define the no-

tion of “equivalence.” In [SP00], the reduction is argued by the equivalence between two

protocols. Koashi also used a similar argument in his proof [Koa09]. However, we notice

that the equivalence in the two papers are different. Shor and Preskill’s equivalence fits the

definition of security while Koashi’s equivalence only fits the definition of secrecy.7 We

7The formal definitions of security and secrecy are given in Section 3.1.

5
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formulate the equivalence by an indistinguishable game, which fits the language of mod-

ern cryptography. We apply the new definition of equivalence into the proof and analyze

the parameter loss in the reduction.

Second, in most of the security proofs [SP00, GLLP04, Ren05], the post-processing8

can be done in public. However, Koashi’s proof [Koa09] requires that the post-processing

should be encrypted by one-time pad. It is costly since Alice and Bob must have a long

secret string beforehand. In Section 4.3, we adopt the argument in [Koa09] and show

that the technique based on uncertainty principle can also be applied to the case that the

post-processing is done without encryption.

1.5 Outline of the Thesis

In Chapter 2, we give a brief introduction to quantum information and linear correction

code, especially the properties we need. Some notation that will be used in this thesis is

presented in Section 2.1.

In Chapter 3, we formally introduce our security model. We start from the abstraction

of QKD. Then, we introduce the formal definition of the composable security. In Section

3.2, we formally define the notion of “equivalence” by an indistinguishable game. In

Section 3.3, we discuss the assumptions we need. The complete description of BB84

protocol is given in Section 3.4.

A complete security proof is given in Chapter 4. First, in Section 4.1, we reduce the

BB84 protocol to an entanglement-based protocol, which is easier to analyze. Then, the

correctness and the parameter estimation are analyzed in Section 4.2. Finally, a security

analysis based on the uncertainty principle (complementary argument), which is the es-

sential part of the proof, is given in Section 4.3. The security of BB84 is concluded in

Section 4.4.

In Chapter 5, we conclude the results we get in this thesis and discuss some prospective

works in the future.

8In this thesis, post-processing refers to parameter estimation, information reconciliation and privacy
amplification. These three steps will be introduced in Section 3.4.
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Chapter 2

Preliminaries

2.1 Notation

Suppose s, s′ are two binary strings. We denote the i-th bit of s by s[i]. We define wt(s)

to be the Hamming weight of s and d(s, s′) to be the Hamming distance between s and s′.

We also define s⊕ s′ to be the bit-wise XOR of s and s′.

Suppose M is an m-by-n matrix and s ∈ {0, 1}n is an n-bit string. Then we define

Ms to an m-bit string such that s is treated as a column vector and Ms is calculated by

matrix multiplication. We denote the i-th row ofM byM [i].

Suppose p is a positive real number. We define [p] to be a set of positive integers by

[p] = {x ∈ N : x ≤ ⌊p⌋}. The number of the elements in a set T is denoted by |T |.

We define H2 to be the binary Shannon entropy by

H2(x) = −x logx− (1− x) log(1− x).

We define to be a function that indicates the truth value of a proposition p by

(p) =

⎧
⎪⎨

⎪⎩

1, if p is true;

0, if p is false.

A function f from the natural numbers to the non-negative reals is called negligible if for

every positive polynomial p, there exists an integer N such that for all integers n > N , it

7
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holds that f(n) < 1
p(n) . In this thesis, “the statement holds with high probability” means

“there exists a negligible function f(n) such that the statement holds with probability

1− f(n), where n is the security parameter1.”

In this thesis, Alice and Bob refer to the two parties who want to establish a shared

secret key and Eve refers to an adversary of the QKD protocol.

2.2 Quantum States and Operations

A quantum register (or a quantum system) is a physical object that can store quantum

information. The content of a quantum register is called a quantum state. A quantum

state is modelled by a density operator, which is a positive semidefinite operator with unit

trace.

In this thesis, quantum registers are denoted by capital letters, such as A,B, F , and so

on. The quantum states of quantum registers are denoted by Greek letters with a subscript

to indicate the registers, such as ρA, σB, and so on. The Hilbert space of a quantum register

A is denoted byHA. The Hilbert spaceHAB of a joint quantum register AB is the tensor

product of the Hilbert spaces of each subsystems; that is,HAB = HA ⊗HB.

We writeD(H) to denote the set of density matrices acting on some Hilbert spaceH.

Also, we define D≤(H) to be the set of subnormalzed density matrices acting on H; that

is, the set of positive semidefinite operators actingH with trace at most one.

We define the notation:

|+⟩ = 1√
2
(|0⟩+ |1⟩) and |−⟩ = 1√

2
(|0⟩ − |1⟩).

The Pauli X gate, the Pauli Z gate and the Hadamard gate H are defined by

X =

⎡

⎢⎣
0 1

1 0

⎤

⎥⎦ , Z =

⎡

⎢⎣
1 0

0 −1

⎤

⎥⎦ and H =
1√
2

⎡

⎢⎣
1 1

1 −1

⎤

⎥⎦ .

1Security parameter will be introduced in Section 3.1.
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Given a n-bit binary string s and an operator U , we define

U s =
n⊗

i=1

U s[i].

2.3 Trace Distance and Fidelity

2.3.1 Trace Distance

The trace distance of two states ρ and σ, denoted as ∥ρ− σ∥tr, is defined by

∥ρ− σ∥tr =
1

2
∥ρ− σ∥1,

where ∥M∥1 = Tr
(√

M †M
)
is the Schatten 1-norm ofM . The trace distance is a metric.

That is, given a Hilbert spaceH, for all ρ, σ, τ ∈ D(H), we have ∥ρ− σ∥tr = ∥σ − ρ∥tr;

∥ρ− σ∥tr = 0 if and only if ρ = σ; and the triangle inequality holds:

∥ρ− τ∥tr ≤ ∥ρ− σ∥tr + ∥σ − τ∥tr .

Let {ρi} and {σi} be two sets of density operators and
∑

i pi = 1 where 0 ≤ pi ≤ 1 for

all i. The trace distance is jointly convex,

∥∥∥∥∥
∑

i

piρi −
∑

i

piσi

∥∥∥∥∥
tr

≤
∑

i

pi ∥ρi − σi∥tr .

2.3.2 Fidelity

The fidelity of two states ρ and σ, F (ρ, σ), is defined as

F (ρ, σ) =
(
∥√ρ

√
σ∥1
)2

. (2.1)

9
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If ρ is a pure state |ψ⟩ ⟨ψ|, then the calculation of the fidelity can be simplified by

F (|ψ⟩ ⟨ψ| , σ) =
(
Tr
√√

|ψ⟩ ⟨ψ| σ
√

|ψ⟩ ⟨ψ|
)2

=
(
Tr
√

|ψ⟩ ⟨ψ|σ|ψ⟩ ⟨ψ|
)2

=
(√

⟨ψ|σ|ψ⟩Tr(|ψ⟩ ⟨ψ|)
)2

=
(√

⟨ψ|σ|ψ⟩
)2

= ⟨ψ|σ|ψ⟩ ,

where the second and the third equation comes from
√

|ψ⟩ ⟨ψ| = |ψ⟩ ⟨ψ|. An operational

meaning of the fidelity can be seen from the calculation above. The term ⟨ψ|σ|ψ⟩ is

the probability of getting |ψ⟩ as the result if we measure σ by the POVM: {|ψ⟩ ⟨ψ| , I −

|ψ⟩ ⟨ψ|}.2

An important property of the fidelity is given by Uhlmann’s theorem.

Lemma 2.1 (Uhlmann’s theorem). Suppose ρ and σ are states of a quantum system Q.

Introduce a second quantum system R which is a copy of Q. Then,

F (ρ, σ) = max
|φ⟩

|⟨ψ|φ⟩|2 ,

where |ψ⟩ is any fixed purification of ρ and the maximization is over all purifications of

σ.

With Uhlmann’s theorem, we can prove a corollary which will be essential in our

security proof.

Corollary 2.2. Suppose ρA is a reduced density operator of ρAB. Suppose ρA and σA

have fidelity F (ρA, σA) ≥ ϵ. Then there exists σAB with TrB (σAB) = σA such that

F (ρAB, σAB) ≥ ϵ.

Proof. Let |ψ⟩ABR be a purification of ρAB, which is also a purification of ρA. Because

F (ρA, σA) ≥ ϵ, by Uhlmann’s theorem, we can find a purification |φ⟩ABR of σA such that
2Some literatures define the fidelity by

√
F (·, ·) such as the famous textbook [NC00]. But many QKD

security proofs [SP00, Koa09] adopt the definition as Equation (2.1). Here we follow the convention.

10
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| ⟨ψ|φ⟩ |2 ≥ ϵ. Let σAB = TrR (|φ⟩ ⟨φ|). Because tracing out a subsystem will not reduce

the fidelity, we have

F (ρAB, σAB) ≥ | ⟨ψ|φ⟩ |2 ≥ ϵ.

Finally, the relation between the trace distance and the fidelity is given by the following

lemma.

Lemma 2.3. For all ρ, σ ∈ D(H), it holds that

1−
√
F (ρ, σ) ≤ ∥ρ− σ∥tr ≤

√
1− F (ρ, σ).

2.4 Linear Code

Let F be a field. An [n, k] linear code C over F is a k-dimensional subspace of Fn. In this

thesis, we only focus on F = Z2. There are two common ways to represent a linear code:

generator matrices and parity check matrices. A generator matrix for an [n, k] linear code

C is any n-by-k matrix G whose columns form a basis of C. In general, there may be

many generator matrices for a linear code. The other way to represent a linear code is by

parity check matrices. A parity check matrix H for an [n, k] linear code C is a full rank

(n− k)-by-n matrix such that for all x ∈ C,

Hx = 0.

In other words, the null space of H is C.

The dual code of C is denoted by C⊥. The code C⊥ consists of all the codewords c

such that c is orthogonal to all the codewords of C. Suppose C ′ is a linear code such that

C ′ ⊆ C⊥ andH ′ is a parity check matrix of C ′. Then, it can be shown that the rows ofH ′

are orthogonal to the rows of H .

The existence of good codes is given by Gilbert-Varshamov bound: as n goes to in-

11
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finity, these exists an [n, k] code protecting against arbitrary t errors such that

k

n
≥ 1−H2

(
2t

n

)
.

In practice, if the positions of the errors are uniformly distributed, there exists a code with

higher code rate protecting against t errors in random positions with high probability.

However, in the cryptographic use, we cannot generally assume the errors are uniformly

distributed. Fortunately, the assumption holds if we apply a random permutation before

decoding. This can be done if we randomly choose a linear code from all the possible

codes. This property has been used in the proofs in [SP00, KP03]. For completeness, we

restate the proposition here.

Proposition 2.4. Suppose Cn,k is the set of all [n, k] linear code over Z2. If we randomly

choose a code C from Cn,k, then for all ϵ > 0, C can protect against t errors with proba-

bility 1− 2−nϵ and the code rate of C satisfies

k

n
= 1−H2

(
t

n

)
− ϵ.

Proof. The key idea comes from the random hashing [BDSW96]. Given an arbitrary n-bit

string x ∈ {0, 1}n \ {0}, there are exactly 1
2 · 2

n n-bit strings whose inner product with x

is zero. That is,

|{s ∈ {0, 1}n : s · x = 0(mod 2)}| = 1

2
· 2n.

Thus, if we uniformly choose a string s from {0, 1}n, then Pr(s · x = 0) = 1
2 . In general,

supposewe have an (n−k)-by-nmatrixM whose rows are uniformly chosen from {0, 1}n.

Then, for all x, x′ ∈ {0, 1}n such that x− x′ ̸= 0, we have

Pr (M(x− x′) = 0) =

(
1

2

)n−k

,

where the probability is over the randomness ofM .

Now, suppose we want to know whether x = x′ for some x, x′ ∈ {0, 1}n. We already

know that Mx = Mx′ and we want to check x = x′ by one more parity bit check. If we

12
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uniformly choose a string s from {0, 1}n and compute s · x and s · x′, then the probability

that we find they are different is only 1
2 conditioned on x ̸= x′. However, if s is linearly

dependent of the rows of M , then s · x must equal to s · x′. In this case, choosing s is

useless.

It is more clever that we only choose s from n-bit strings which are linearly indepen-

dent of the rows ofM . In this case, we have a better chance to find s·x ̸= s·x′ conditioned

on x ̸= x′. That is the case we use a parity check matrix H of a random code C rather

than a randomly generated matrix M . Thus, for all x, x′ ∈ {0, 1}n such that x ̸= x′, we

have

Pr (H(x− x′) = 0) ≤
(
1

2

)n−k

. (2.2)

Suppose x is a codeword of C and the corrupted codeword is y = x+ e. Assume the

number of errors is at most t so we have wt(e) ≤ t. Let E be the set of all possible errors

and we have |E| ≤
(
n
t

)
. The decoder first comoputes

r = Hy = Hx+He = He.

If there is only one e′ ∈ E such that He′ = r, the decoder decides e′ as the error and

correct it. In this case, the error-correction is always successful. If there are two strings

e1, e2 ∈ E such that He1 = He2 = r, the decoder randomly chooses one of them.

However, the probability that such event happens is

Pr
(
He1 = He ∨He2 = He ∨ · · · ∨He|E|−1 = He

)
≤

|E|−1∑

i=1

Pr (Hei = He) ≤ (|E|−1)

(
1

2

)n−k

,

where e1, e2, · · · , e|E|−1 are all the elements ofE\{e}. Choosing n−k = n
(
H2

(
t
n

)
+ ϵ
)
,

the probability that error-correction fails is at most

(|E|− 1)

(
1

2

)n−k

≤
(
n

t

)(
1

2

)n−k

≤ 2nH2( t
n)2−n(H2( t

n)+ϵ) = 2−nϵ,

where the second inequality comes from
(
n
λn

)
≤ 2nH2(λ) (Lemma 2.6). Because n− k =

13
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n
(
H2

(
t
n

)
+ ϵ
)
, we have the code rate

k

n
= 1−H2

(
t

n

)
− ϵ.

2.5 Information Reconciliation

Now, let us consider a situation similar to the error correction. Suppose Alice has a se-

cret string sA and Bob has another secret string sB. Given that the Hamming distance

between two strings is small, could they agree on a same string without revealing too

much information about it? The answer is yes. A solution is doing error correction over a

public channel, which is known as information reconciliation. In this section, we realize

information reconciliation by a linear error correction code.

Let Cn,k be the set of all [n, k] linear code over Z2. Alice chooses a parameter m and

randomly chooses a linear code C from Cn,n−m where n = |sA|. Let H to be a parity

check matrix of C. She computes the error syndrome r = HsA and announces H and r

in a public channel. Formally, we define A_.1M+(sA,m) to be an algorithm takes as input

a string sA and a parameterm as follow:

A_.1M+(sA,m)

Input: a string sA and a parameterm

1. Randomly choose a linear code C from C|sA|,|sA|−m. LetH to be a parity check

matrix of H .

2. Compute the error syndrome r = HsA.

Output: a matrix H and the syndrome r

On the Bob’s side, we first define T (s,m) to be the set

T (s,m) = {t ∈ {0, 1}n : d(s, t) < m} .

14
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With the error syndrome r, Bob tries to find a string s ∈ T (sB,m) such that Hs = r.

If there is only one s ∈ T (sB,m) satisfies Hs = r, he sets his reconciliated string as

s. If there are several strings s1, · · · , sx ∈ T (sB,m) such that Hs1 = · · · = Hsx = r,

Bob randomly chooses one of them as his reconciliated string. If Bob cannot find any

string s ∈ T (sB,m) such that Hs = r, he just sets the string 0n as his reconciliated

string. Formally, we define A_..2+(sB, H, r) to be an algorithm takes as input a string

sB, a matrix H and a syndrome r as follow:

A_..2+(sB, H, r)

Input: a string sB, a matrix H and a syndrome r

1. Find a set of string S = {s ∈ T (sB,m) : Hs = r}.

2. If |S| = 1, choose the only element in S as reconciliated string. If |S| ≥ 2,

randomly choose an element in S as reconciliated string. If |S| = 0, choose

0|sB | as reconciliated string.

Output: a reconciliated string s

If the Hamming distance between sA and sB is not too big, the probability that Alice

and Bob reach the same reconciliated string is given by the following proposition.

Proposition 2.5. Suppose sA and sB are two n-bit strings such that d(sA, sB) < δn. Then,

for all ϵ > 0, if we choosem = nH2(δ) + nϵ and H, r are the outputs of A_.1M+(sA,m),

we have sA = A_..2+(sB, H, r) with probability 1− 2−nϵ.

Proof. Because d(sA, sB) < δn, sA must lie in T (sB, δn). As we have shown in the proof

of Proposition 2.4, becauseH is the parity check matrix of a random code, the probability

that there exists another string sx ∈ T (sB,m) such that sx ̸= sA and Hsx = HsA = r is

Pr
(
Hs1 = HsA ∨Hs2 = HsA ∨ · · · ∨Hs|T (sB ,δn)|−1 = HsA

)

≤
|T (sB ,δn)|−1∑

i=1

Pr (Hsi = HsA) ≤ (|T (sB, δn)|− 1)

(
1

2

)m

, (2.3)

15
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where s1, s2, · · · , s|T (sB ,δn)|−1 are all the elements ofT (sB, δn)\{sA}. Because |T (sB, δn)| =
(
n
δn

)
≤ 2nH2(δ) (Lemma 2.6), Equation (2.3) can be bounded by

(|T (sB, δn)|− 1)

(
1

2

)m

≤ 2nH2(δ)2−nH2(δ)−nϵ = 2−nϵ.

We have completed the proof.

2.6 Useful Mathematical Relations

Lemma 2.6. For all N ∈ N,λ ∈ [0, 1], it holds that

1

N + 1
2NH(λ) ≤

(
N

λN

)
≤ 2NH(λ).

Proof. Because the logarithm is a strictly increasing function, it is sufficient to show that

− log(N + 1) +NH(λ) ≤ log
(

N

λN

)
≤ NH(λ).

By Stirling’s approximation logx! ∼ x logx− x+ 1
2 log(2πx), we have

log
(

N

λN

)
= logN !− log(λN)!− log(N − λN)!

= N logN −N +
1

2
log(2πN)− λN logλN + λN − 1

2
log(2πλN)

− (N − λN) log(N − λN) + (N − λN)− 1

2
log(2π(N − λN))

= N logN − λN logλN − (N − λN) log(N − λN) +
1

2
log

1

2πλ(N − λN)

≤ N logN − λN logλN − (N − λN) log(N − λN) (2.4)

= (N − λN) logN − λN logλ− (N − λN) logN − (N − λN) log(1− λ)

= −Nλ logλ−N(1− λ) log(1− λ)

= NH(λ),

where Equation (2.4) comes from that 1
2 log

1
2πλ(N−λN) is negative whenN is large enough.
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On the other hand, because− log(N +1) < 1
2 log

1
2πλ(N−λN) whenN is large enough, we

have

log
(

N

λN

)
= N logN − λN logλN − (N − λN) log(N − λN) +

1

2
log

1

2πλ(N − λN)

≥ N logN − λN logλN − (N − λN) log(N − λN)− log(N + 1)

= − log(N + 1) +NH(λ).

Thus, we have proved

1

N + 1
2NH(λ) ≤

(
N

λN

)
≤ 2NH(λ).

Lemma 2.7 ([Ser74, Corollary 1.1]). Suppose we have a list of values x1, · · · , xN ∈ R

which are not necessarily distinct. We draw a sample of size n without replacement and

denote these n sample results by a sequence of random variablesX1, · · · , Xn. We assume

x1, · · · , xN are not all the same so that maxi xi − mini xi ̸= 0. Let Sn =
∑n

i=1 Xi and

µ = 1
N

∑N
i=1 xi. Then, for all t > 0, it holds that

Pr (Sn − nµ ≥ nt) ≤ e−2t
2 nN
(N−n+1)(maxi xi−mini xi) .

Lemma 2.8 (Random Sampling Test). Suppose s1 and s2 are twoN -bit binary strings. If

we randomly choose a subset S ⊂ {1, · · · , N} of size |S| = k. Let S! = {1, · · · , N} \ S

and n = N − k. Then, for all 0 < ϵ, δ < 1, it holds that,

Pr

⎛

⎝
∑

i∈S

(s1[i] ̸= s2[i]) ≤ δk ∧
∑

i∈S!

(s1[i] ̸= s2[i]) ≥ (δ + ϵ)n

⎞

⎠ ≤ e−2ϵ
2 nk2

N(k+1) ,

where the probability is over all the choices of S.

Proof. This proof mainly follows the proof of Lemma 6 in [TL17]. First, we consider the

17
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case s1 = s2 and we have

Pr

⎛

⎝
∑

i∈S!

(s1[i] ̸= s2[i]) ≥ (δ + ϵ)n

⎞

⎠ = 0,

so the inequality holds trivially.

Now we deal with the case s1 ̸= s2. Note that if an event A implies another event B,

then Pr(A) ≤ Pr(B). Similarly, because the event

∑

i∈S

(s1[i] ̸= s2[i]) ≤ δk ∧
∑

i∈S!

(s1[i] ̸= s2[i]) ≥ (δ + ϵ)n

implies the event

1

k

∑

i∈S

(s1[i] ̸= s2[i]) + ϵ ≤ 1

n

∑

i∈S!

(s1[i] ̸= s2[i]) ,

we have

Pr

⎛

⎝
∑

i∈S

(s1[i] ̸= s2[i]) ≤ δk ∧
∑

i∈S!

(s1[i] ̸= s2[i]) ≥ (δ + ϵ)n

⎞

⎠

≤ Pr

⎛

⎝1

k

∑

i∈S

(s1[i] ̸= s2[i]) + ϵ ≤ 1

n

∑

i∈S!

(s1[i] ̸= s2[i])

⎞

⎠ . (2.5)

Let µ(s1, s2) = 1
N

∑N
i=1 (s1[i] ̸= s2[i]). Then, we have

1

k

∑

i∈S

(s1[i] ̸= s2[i]) =
1

k

⎛

⎝Nµ(s1, s2)−
∑

i∈S!

(s1[i] ̸= s2[i])

⎞

⎠ .
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Thus, the right hand side of the Equation (2.5) can be written as

Pr

⎛

⎝1

k

∑

i∈S

(s1[i] ̸= s2[i]) + ϵ ≤ 1

n

∑

i∈S!

(s1[i] ̸= s2[i])

⎞

⎠

= Pr

⎛

⎝1

k

⎛

⎝Nµ(s1, s2)−
∑

i∈S!

(s1[i] ̸= s2[i])

⎞

⎠+ ϵ ≤ 1

n

∑

i∈S!

(s1[i] ̸= s2[i])

⎞

⎠

= Pr

⎛

⎝Nµ(s1, s2) + kϵ ≤ k + n

n

∑

i∈S!

(s1[i] ̸= s2[i])

⎞

⎠

= Pr

⎛

⎝ 1

n

∑

i∈S!

(s1[i] ̸= s2[i]) ≥ µ(s1, s2) +
kϵ

N

⎞

⎠ . (2.6)

Nowwe paraphrase the random sampling test in terms of Lemma 2.7. For i = 1, · · · , N ,

let xi = (s1[i] ̸= s2[i]). Because we deal with the case s1 ̸= s2, we have maxi xi −

mini xi = 1. Because choosing the set S is equivalent to choosing its complement S!, we

let X1, · · · , Xn be n draws from x1, · · · , xN according to the set S!. Let Sn =
∑

i∈S! xi

and t = kϵ
N . Then, combining Equation (2.6) and Lemma 2.7, we have

Pr
(
1

n
Sn ≥ µ(s1, s2) +

kϵ

N

)
≤ e−2(

kϵ
N )

2 nN
N−n+1 = e−2ϵ

2 nk2

N(k+1) .
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Chapter 3

QKD Model and Security

In this chapter, we formally introduce our security model and the proof in Chapter 4 will

follow this model. In Section 3.1, we introduce the security definition. In particular, the

composable security, the final security criterion we need, is defined in Section 3.1.2. Then,

in Section 3.1.3, we define two properties, correctness and secrecy, and we show that the

combination of the correctness and the secrecy implies the composable security.

In Section 3.2, we define the equivalence game, which will be useful in the security

proof. In Section 3.3, we discuss all the assumptions we need and the analysis in Chapter

4 will base on these assumptions. In Section 3.4, we formally describe BB84 protocol.

3.1 Security Definition

3.1.1 Abstraction

In order to define the security, we need to describe what QKD is formally. In this section,

we give an abstraction of QKD, including the input and output of the protocol and the

resources of the involved parties, without specifying any detailed steps of the protocol.

In this thesis, we only focus on “two-party key distribution.” We remark that there exist

some schemes that allow multi-parties to establish a shared secret key simultaneously, but

this is beyond the scope of this thesis.

A QKD protocol takes a security parameter n as input. The security parameter decides
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the key space K which is the set of binary strings that the protocol may generate. It also

decides other parameters that the protocol uses. Suppose Alice and Bob are the two parties

who want to establish a shared secret key |k⟩ ∈ K1. Alice and Bob are given a quantum

channel and a classical channel between them2.

The protocol could be accepted or rejected. In the case of acceptance, Alice gets a key

kA ∈ K and Bob gets a key kB ∈ K. In the case of rejection, they always set their key

registers in a fixed state |⊥⟩, where ⊥ is a pre-determined value not in the key space K.

Let KA be Alice’s key register and KB be Bob’s key register. We formally define

QKD as follow.

Definition 3.1 (Quantum key distribution). A quantum key distribution (QKD) protocol is

an interactive algorithm, run by two parties Alice and Bob3, that takes as input a security

parameter n and outputs a key kA ∈ K ∪ {⊥} in KA and a key kB ∈ K ∪ {⊥} in KB. It

is required that if there is no attack, Alice’s and Bob’s key registers should be

1

|K|
∑

k∈K

|k⟩ ⟨k|KA
⊗ |k⟩ ⟨k|KB

, (3.1)

with high probability.

Note that Equation (3.1) implies that when Alice and Bob accept the protocol andKA

and KB have the same value with high probability, where k is uniformly distributed.

3.1.2 Composable Security

In the early development of QKD, the security was defined in terms of the mutual infor-

mation I(S;W ) between the generated key S and the classical measurement outcomeW

of the adversary’s system, where both S and W are classical random variables [LC99,

SP00, NC00, GLLP04]. However, the definition in terms of the mutual information does

1For consistency, we write the key as a quantum state |k⟩. But note that the generated key is classical.
2Why do we consider classical and quantum channels separately given that the classical channels is just

a special case of quantum channels? The reason is that we could give the adversaries different power over
the different channels. Usually, we allow the adversaries to do any attack, such as intercepting or tampering,
over the quantum channel but allow the adversaries only to eavesdrop the classical channel.

3Alice and Bob are just the nicknames of the two parties who want to have a shared secret key.
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not guarantee the security against the general attack. It asks the adversary to do the mea-

surement at the end of the QKD protocol, which makes the definition not “composable”

(the secret key remains secure when it is employed as a resource in other cryptographic

system). Konig et.al.showed that small mutual information does not guarantee the com-

posable security [KRBM07].

The definition of composable security was proposed in [BOHL+05, RK05], which is

stated in terms of trace distance. Here we restate the definition by a thought experiment,

which is easier to interpret the operational meaning of the definition. The definition we

state is equivalent to the ones proposed in [BOHL+05, RK05].

We define some notation for the experiment. Let KA and KB be Alice’s and Bob’s

key registers respectively. Let C be the register for all the classical information that Al-

ice and Bob send over the classical channel and let F be the flag that indicates acception

or rejection. Let E be the quantum system of the adversaries. Recall that K is the key

space decided by the security parameter n. We define K+ = K ∪ {⊥}. Let HC and

HF be the Hilbert space of all the classical information and flag respectively. Note that

HF is 2-dimensional. Let HE be the Hilbert space of the quantum system of the adver-

saries. To sum up, the registerKA ⊗KB ⊗ F ⊗C ⊗E represents a quantum state lies in

D (K+ ⊗K+ ⊗HF ⊗HC ⊗HE).

QKD security experiment. In the experiment, there is a distinguisher D whose goal is

to guess which world he is in. In the real world, Alice and Bob run the QKD protocol

Q and try to get the key in their key registers KA and KB. The adversary A can both

control the quantum and classical channels. Let Sprotocol be the set of all QKD protocols

and Sadversary be the set of all possible adversaries. Let

_2�H : Sprotocol × Sadversary → D
(
K+ ⊗K+ ⊗HF ⊗HC ⊗HE

)

be a function whose output is the final state of the whole real world when the protocol Q

is run under the attack of A.

In the ideal world, Alice and Bob’s generated key registers are replaced with an ideal
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key. Specifically, the state in KA ⊗KB is replaced with 1
|K|
∑

k∈K |k⟩ ⟨k|KA
⊗ |k⟩ ⟨k|KB

if F = |acc⟩ ⟨acc| and replaced with |⊥⟩ ⟨⊥|KA
⊗ |⊥⟩ ⟨⊥|KB

if F = |rej⟩ ⟨rej|. Let

A/2�H : Sprotocol × Sadversary → D
(
K+ ⊗K+ ⊗HF ⊗HC ⊗HE

)

be a function whose output is the final state of the whole ideal world when the protocolQ

is run under the attack of A.

In the end of the experiment, D will get the state _2�H(Q,A) with probability 1
2 and

A/2�H(Q,A) with probability 1
2 . The distinguisher D outputs a bit b = 0 if he guesses he

is in the real world or b = 1 if he guesses he is in the ideal world.

Definition 3.2 (secure QKD). A QKD protocol Q is called ϵ-secure if for any adversary

A and for any distinguisher D, it holds that

|Pr (D(_2�H(Q,A)) = 1)− Pr(D(A/2�H(Q,A)) = 1)| ≤ ϵ.

The trace distance has the operational meaning: if ∥ρ− σ∥tr = ϵ, then the maximum

probability of distinguishing them is 1
2(1 + ϵ). Thus, a QKD protocolQ is ϵ-secure if and

only if for any adversary A, we have

∥_2�H(Q,A)− A/2�H(Q,A)∥tr ≤ ϵ.

Now we analyze the final states in the real world and the ideal world further. Suppose

Pr(kA, kB) is the probability that KA = kA and KB = kB in the state _2�H(Q,A). The

probability pacc that Alice and Bob accept the protocol is pacc =
∑

kA,kB∈K Pr(kA, kB)4

and the probability prej that they reject is prej = 1 − pacc. Let ρ(⊥)CE be the normalized

state of C,E registers conditioned on rejection. Also let ρ(kA,kB)
CE be the normalized state

of C,E registers conditioned on KA = kA and KB = kB. The states _2�H(Q,A) and

4Note that the summation excludes kA, kB = ⊥.
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A/2�H(Q,A) can be written as classical-quantum states:

_2�H(Q,A) = prej |⊥,⊥⟩ ⟨⊥,⊥|KAKB
⊗ |rej⟩ ⟨rej|⊗ ρ(⊥)CE

+
∑

kA,kB∈K

(
Pr(kA, kB) |kA, kB⟩ ⟨kA, kB|KAKB

⊗ |acc⟩ ⟨acc|F ⊗ ρ(kA,kB)
CE

)
(3.2)

and

A/2�H(Q,A) = prej |⊥,⊥⟩ ⟨⊥,⊥|KAKB
⊗ |rej⟩ ⟨rej|⊗ ρ(⊥)CE

+

(
1

|K|
∑

k∈K

|k, k⟩ ⟨k, k|KAKB
⊗ |acc⟩ ⟨acc|F

)
⊗

∑

kA,kB∈K

Pr(kA, kB)ρ
(kA,kB)
CE . (3.3)

Suppose ρKAKBFCE = _2�H(Q,A). Let

ρ∧accKAKBFCE =
∑

kA,kB∈K

Pr(kA, kB)
(
|kA, kB⟩ ⟨kA, kB|KAKB

⊗ |acc⟩ ⟨acc|F ⊗ ρ(kA,kB)
CE

)

be the subnormalized state that Alice and Bob accept the protocol. By the convexity of

the trace distance, we have

∥_2�H(Q,A)− A/2�H(Q,A)∥tr

≤ prej
∥∥∥|⊥,⊥⟩ ⟨⊥,⊥|KAKB

⊗ |rej⟩ ⟨rej|⊗ ρ(⊥)CE − |⊥,⊥⟩ ⟨⊥,⊥|KAKB
⊗ |rej⟩ ⟨rej|⊗ ρ(⊥)CE

∥∥∥
tr

+ pacc
∥∥ρ∧accKAKBFCE − χKAKB ⊗ ρ∧accFCE

∥∥
tr

= pacc
∥∥ρ∧accKAKBFCE − χKAKB ⊗ ρ∧accFCE

∥∥
tr
,

where ρ∧accFCE = TrKAKB(ρ
∧acc
KAKBFCE) and χKAKB = 1

|K|
∑

k∈K |k⟩ ⟨k|KA
⊗ |k⟩ ⟨k|KB

. That

is, because the states of the two worlds must be the same when rejection, we only need to

care about the state in the case of acceptance. Thus, we have the following corollary.

Corollary 3.3. Suppose Q is a QKD protocol and ρKAKBFCE = _2�H(Q,A). If for any

adversary A, the inequality

∥∥ρ∧accKAKBFCE − χKAKB ⊗ ρ∧accFCE

∥∥
tr
≤ ϵ
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holds, then Q is ϵ-secure.

3.1.3 Correctness and Secrecy

The goal of a key distribution protocol is to establish a “shared secret key.” As the goal

suggests, a secure QKD should satisfy two properties. First, it should establish a shared

key. That is, if Alice and Bob accept the protocol, their key registers should be the same

with high probability. In particular, we say a QKD protocol Q is ϵcor-correct if

Pr (KA ̸= KB ∧ F = |acc⟩ ⟨acc|) ≤ ϵcor.

Second, it should establish a secret key. That is, from the perspective of Eve, the gener-

ated key should be very close to uniform distribution whenever Alice and Bob accept the

protocol. We say a QKD protocol Q is ϵsec-secret if

∥∥ρ∧accKAFCE − χKA ⊗ ρ∧accFCE

∥∥
tr
≤ ϵsec,

where ρ∧accKAFCE = TrB(ρ∧accKAKBFCE), ρ∧accFCE = TrKAKB(ρ
∧acc
KAKBFCE) andχKA = 1

|K|
∑

k∈K |k⟩ ⟨k|A.5

Sometimes, it may be difficult to show the security of a QKD protocol. Portmann and

Renner [PR14] showed the security can be shown by considering the correctness and the

secrecy separately.

Proposition 3.4 ([PR14, Theorem 4.1]). Suppose a QKD protocol Q is ϵcor-correct and

ϵsec-secret. Then, Q is (ϵcor + ϵsec)-secure.

Proof. We define an intermediate state σ∧accKAKBFCE which equals to ρ∧accKAKBFCE except that

the value inKB is replaced with the value inKA. That is,

σ∧accKAKBFCE =
∑

kA,kB∈K

Pr(kA, kB)
(
|kA, kA⟩ ⟨kA, kA|KAKB

⊗ |acc⟩ ⟨acc|⊗ ρ(kA,kB)
CE

)
.

5Note that ρ∧acc
KAKBFCE is a subnormalized state.
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By the triangle inequality, we have

∥∥ρ∧accKAKBFCE − χKAKB ⊗ ρ∧accFCE

∥∥
tr
≤
∥∥ρ∧accKAKBFCE − σ∧accKAKBFCE

∥∥
tr
+
∥∥σ∧accKAKBFCE − χKAKB ⊗ ρ∧accFCE

∥∥
tr
,

(3.4)

where χKAKB = 1
|K|
∑

k∈K |k, k⟩ ⟨k, k|KAKB
. Direct calculation shows that

∥∥ρ∧accKAKBFCE − σ∧accKAKBFCE

∥∥
tr
≤

∑

kA,kB∈K

Pr(kA, kB)
∥∥∥
(
|kA, kB⟩ ⟨kA, kB|KAKB

⊗ |acc⟩ ⟨acc|⊗ ρ(kA,kB)
CE

)

−
(
|kA, kA⟩ ⟨kA, kA|KAKB

⊗ |acc⟩ ⟨acc|⊗ ρ(kA,kB)
CE

)∥∥∥
tr

=
∑

kA,kB∈K∧kA ̸=kB

Pr(kA, kB) = Pr(KA ̸= KB).

Because KB is just a copy of KA both in the states σ∧accKAKBFCE and χKAKB ⊗ ρ∧accFCE , we

have

∥∥σ∧accKAKBFCE − χKAKB ⊗ ρ∧accFCE

∥∥
tr
=
∥∥TrB

(
σ∧accKAKBFCE

)
− TrB (χKAKB ⊗ ρ∧accFCE)

∥∥
tr

=
∥∥ρ∧accKAFCE − χKA ⊗ ρ∧accFCE

∥∥
tr
. (3.5)

Because Q is ϵcor-correct and ϵsec-secret, we have Pr(KA ̸= KB) ≤ ϵcor and
∥∥ρ∧accKAFCE − χKA ⊗ ρ∧accFCE

∥∥
tr
≤ ϵsec. Thus, we have

∥∥ρ∧accKAKBFCE − χKAKB ⊗ ρ∧accFCE

∥∥
tr
≤

ϵcor + ϵsec.

Some papers [TSSR11, HT12] adopts a slightly weaker notion of secrecy. In their

definition, a QKD protocol is ϵsec-secret if

min
σFCE

∥∥ρ∧accKAFCE − χKA ⊗ σFCE

∥∥
tr
≤ ϵsec.

However, the follow lemma says that two definitions are equivalent up to a factor of 2.

Lemma 3.5 ([PR14, Appendix B]). Suppose we have a QKD protocolQ under the attack

of A. Let ρKAKBFCE = _2�H(Q,A). Then

min
σFCE

∥∥ρ∧accKAFCE − χKA ⊗ σFCE

∥∥
tr
≤ ϵsec implies that

∥∥ρ∧accKAFCE − χKA ⊗ ρ∧accFCE

∥∥
tr
≤ 2ϵsec.
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Proof. Suppose σ∗FCE is the state achieves theminimum. Because tracing out only reduces

the trace distance, we have

∥∥TrA
(
ρ∧accKAFCE

)
− TrA (χKA ⊗ σ∗FCE)

∥∥
tr
= ∥ρ∧accFCE − σ∗FCE∥tr ≤

∥∥ρ∧accKAFCE − χKA ⊗ σ∗FCE

∥∥
tr
.

(3.6)

Because tracing out a subsystem which is a part of a product state would not change the

trace distance, we have

∥χKA ⊗ σ∗FCE − χKA ⊗ ρ∧accFCE∥tr = ∥σ∗FCE − ρ∧accFCE∥tr = ∥ρ∧accFCE − σ∗FCE∥tr . (3.7)

By Equation (3.6), Equation (3.7) and triangle inequality, we have

∥∥ρ∧accKAFCE − χKA ⊗ ρ∧accFCE

∥∥
tr
≤
∥∥ρ∧accKAFCE − χKA ⊗ σ∗FCE

∥∥
tr
+ ∥χKA ⊗ σ∗FCE − χKA ⊗ ρ∧accFCE∥tr

≤ 2
∥∥ρ∧accKAFCE − χKA ⊗ σ∗FCE

∥∥
tr

= 2 min
σFCE

∥∥ρ∧accKAFCE − χKA ⊗ σFCE

∥∥
tr
.

3.2 Equivalence Game

Sometimes, it may be difficult to analyze the security of a QKD protocol. Suppose we

can modify some steps in the original protocol so that Eve cannot notice the change from

her perspective. Then, the security of the original protocol reduce to the modified one

and it is sufficient to show that the modified protocol is secure. Intuitively, because any

difference of the security level can help Eve to distinguish two protocols, the protocols

should have the same security level if Eve cannot tell them apart. In such a case, we say

the two protocols are equivalent. In this section, we formulate the idea of equivalence

and explain why the security of the modified version implies the security of the original

version.

We define the notion of equivalence by a thought experiment. There are four players
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in this experiment, a challenger, a distinguisher D and two players (Alice and Bob) who

are going to run a QKD protocol. In the beginning, the challenger tells Alice and Bob

which QKD protocol they should run. The goal of D is to guess which protocol they run.

During the experiment, D can do anything over the quantum channel and learn all the

information over the classical channel. When the protocol ends, Alice and Bob send their

key registersKA andKB to D. Finally, D guesses which protocol they run and we say D

wins if D guesses the right answer.

We make some remarks before introducing the formal definition. First, in this experi-

ment,D plays the role of adversaries. That meansD can apply all kinds of attack allowed

in the QKD setting. Second, D gets more information than the ordinary adversaries be-

cause Alice and Bob will not annouce the key registers in the ordinary case.

We define the equivalence game between two QKD protocols Q0 and Q1, denoted as

1[mBpQ0,Q1
(D), as follow.

1. The challenger uniformly chooses a random bit b ∈ {0, 1}.

2. Alice and Bob run the protocolQb where the distinguisherD controls both the quan-

tum and classical channels.

3. After the protocol ends, Alice and Bob send their key registersKA and KB to D.

4. D outputs his guess b′. Let 1[mBpQ0,Q1
(D) = 1 if b = b′ and 1[mBpQ0,Q1

(D) = 0 if

b ̸= b′.

Definition 3.6. The two QKD protocols Q0 and Q1 are called equivalent if for any dis-

tinguisher D, it holds that

Pr
(
1[mBpQ0,Q1

(D) = 1
)
=

1

2
.

Next, we justify the reason why the game above is a good definition of equivalence.

A QKD protocol has two important metrics: the key rate and the security level. We are
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going to show that two equivalent protocols must have the same key rates and the same

security levels.

Because D has full control of the quantum channel, two protocols are equivalent only

if the quantum states transmitted in the channel are the same. The distinguisherD can also

get the final key register KA, so he also knows the length of the generated key. Thus, the

generated key of two equivalent protocols must have the same length. The same transmit-

ted states and the same length of the keys implies that the key rates must be the same.

The following proposition implies that two equivalent protocols have the same security

levels.

Lemma 3.7. The two QKD protocols Q0 and Q1 are equivalent if and only if for any A,

we have

∥_2�H(Q0,A)− _2�H(Q1,A)∥tr = 0.

Proof. We first show the forward direction. Suppose there exists an adversaryA such that

∥_2�H(Q0,A)− _2�H(Q1,A)∥tr = ϵ > 0.

Because the distinguisher D owns the key registers KA and KB in the end, D has the

full control of the final state. Thus, there exists a POVM such that D can distinguish

_2�H(Q0,A) and_2�H(Q1,A)with the probability 1
2(1+ϵ), which leads to a contradiction.

We then show the backward direction. Suppose there exists a strategy of D such that

the winning probability of D is 1
2(1 + ϵ) where ϵ > 0. Then, D always writes his guess-

ing in the register E of the final state. Then, if we measure the register E, we should

distinguish _2�H(Q0,A) and _2�H(Q1,A) with probability 1
2(1 + ϵ), which contradicts to

∥_2�H(Q0,A)− _2�H(Q1,A)∥tr = 0.

Corollary 3.8. Suppose two QKD protocols Q0 and Q1 are equivalent. Then, Q0 is ϵ-

secure if and only if Q1 ϵ-secure.

Proof. From Lemma 3.7, because Q0 and Q1 are equivalent, we have

∥_2�H(Q0,A)− _2�H(Q1,A)∥tr = 0,
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which implies _2�H(Q0,A) = _2�H(Q1,A). Because the final state of in the ideal world

is fully depends on the final state in the real world, we have A/2�H(Q0,A) = A/2�H(Q1,A).

Assume Q0 is ϵ-secure. Then for any adversary A, we have

∥_2�H(Q0,A)− A/2�H(Q0,A)∥tr ≤ ∥_2�H(Q0,A)− _2�H(Q1,A)∥tr + ∥_2�H(Q1,A)− A/2�H(Q0,A)∥tr

= ∥_2�H(Q1,A)− A/2�H(Q0,A)∥tr

= ∥_2�H(Q1,A)− A/2�H(Q1,A)∥tr ≤ ϵ.

On the other side, assume Q1 is ϵ-secure. Then for any adversary A, we have

∥_2�H(Q1,A)− A/2�H(Q1,A)∥tr ≤ ∥_2�H(Q1,A)− _2�H(Q0,A)∥tr + ∥_2�H(Q0,A)− A/2�H(Q1,A)∥tr

= ∥_2�H(Q0,A)− A/2�H(Q1,A)∥tr

= ∥_2�H(Q0,A)− A/2�H(Q0,A)∥tr ≤ ϵ.

Thus, Q0 is ϵ-secure if and only if Q1 ϵ-secure.

3.3 Assumptions

Assumptions play an important role in a security proof. If the implementation deviates

from the assumptions, Eve may learn extra information by applying the side-channel at-

tack. For example, if Alice does not have a perfect single qubit source, Eve can employ

photon number splitting attack [HIGM95, LJ02]. Or, detector blinding attack [LWW+10]

allows Eve to learn the whole secret key without being detected by partially controlling

the detectors. Thus, it is crucial to specify the conditions when the security holds. In this

section, we list all the assumptions we need.

1. Correctness and completeness of quantummechanics. We assume quantum me-

chanics is correct. All the operations done by the involved parties should be de-

scribed by quantum mechanics and all the measurement results can be predicted

by quantum mechanics. Furthermore, we assume quantum mechanics is complete.
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That is, there does not exist other theory which is more informative than quantum

mechanics about the measurement results. This implies that Eve cannot get more

information than that quantum mechanics allows.6

2. Classical authenticated channel. We assume the classical channel between Alice

and Bob is authenticated. That is, Eve cannot tamper the information over the clas-

sical channel. In addition, Alice canmake sure themessages over the channel comes

from Bob, and so is Bob. This assumption can be achieved by using information-

theoretically secure message authentication codes if Alice and Bob have a short

shared secret key beforehand.7

3. Isolated laboratory. We assume that Eve has no access to Alice’s and Bob’s

devices, That is, Eve cannot control or influence the devices and the devices do

not reveal any information to Eve. In reality, this assumption may be difficult to

achieve due to side-channel attack. However, measurement device independent

(MDI) QKD can remove the isolation assumption on the measurement devices.

4. Local randomness. We assume that Alice and Bob can access to an unbounded

uniformly random source.

5. Perfect detection. We assume that Alice’s and Bob’s detectors have no dark count

and loss. We also assume that all the measurements can be done exactly as the

protocol specifies.

6. Perfect source. We assume that Alice’s sources work exactly as the protocol spec-

ifies. In particular, we assume Alice can generate a perfect EPR pair or generate a

single qubit in a desired state.

Unless otherwise stated, all the security proofs in this thesis are analyzed under these

six assumptions.
6Note that the correctness and the completeness are different. The former does not imply the latter. Be-

cause quantum mechanics admits the indeterminism, only assuming quantum mechanics is correct does not
exclude the possibility that there exists some “hidden variables” that can help Eve to get more information.
The further discussion about the correctness and the completeness of quantum mechanics can be found in
[CR11].

7Due to this assumption, QKD is actually a “key expansion protocol” rather than key distribution protocol
if we want to achieve information-theoretic security.
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3.4 BB84 protocol

BB84 protocol was introduced in Bennett and Brassard’s seminal paper in 1984 [BB84].

Later on, many papers [SP00, KP03, Ren05, Koa09, TL17] analyzed the security of BB84.

However, the description of BB84 protocols in these papers have slight difference. For

example, [KP03, Koa09] require that the error syndrome for information reconciliation

must be encrypted while [SP00, Ren05, TL17] does not require it. For clarity, we intro-

duce BB84 protocol in this section and the security proof will follows the description and

notation in this section.

BB84 protocol is composed of three stages: state preparation (SP), parameter esti-

mation (PE) and information reconciliation and privacy amplification (IP).

State Preparation In the SP stage, Alice uniformly sends one of the qubits |0⟩ , |1⟩ , |+⟩ , |−⟩

at random. Since Bob does not know which state Alice sent, he measures the each re-

ceived qubit in the Z basis orX basis both with probability 1
2 . Precisely, Alice uniformly

chooses a random string sA ∈ {0, 1}(4+η)n for the bit values and another random string

hA ∈ {0, 1}(4+η)n for the bases that she encodes. Then, she sends (4 + η)n qubits in the

state HhAXsA |0⟩⊗(4+η)n.

Bob also uniformly chooses a random string hB ∈ {0, 1}(4+η)n for the bases that he

measures. The (4+η)-bit measurement result is denoted by sB, where sB[i] = 0 represents

|0⟩ or |+⟩ and sB[i] = 1 represents |1⟩ or |+⟩. After Bob measuring all (4+η)n qubits, he

announces the fact. This step is crucial since parameter estimation should not start until

the SP stage is end.

Parameter Estimation The goal of PE stage is to estimate the disturbance of the po-

tential adversary. Conceptually, Alice and Bob randomly choose a subset of the qubits

and compare the results publicly. However, if Bob chooses a different basis that Alice

encodes, the measurement result will be uniformly random. In this case, the result is not

faithful and gives no information about the disturbance. Therefore, they only keep those

qubits that they encode and measure in the same bases. This step is known as sifting. To
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do it, Alice announces the bases hA. Then, Bob computes the indices that they use the

same bases; that is the set

T0 = {i ∈ [(4 + η)n] : hA[i] = hB[i]}.

To make the final key long enough, they abort the protocol if |T0| < 2n. This is the reason

why Alice sends (4 + η)n qubits rather than 4n qubits. With these extra ηn qubits, the

probability of |T0| < 2n is negligible.

When the protocol is aborted, they set the flag register F in the state |rej⟩ ⟨rej| and

their key registers in the state |⊥⟩ ⟨⊥|. The final output isKA = ⊥ andKB = ⊥ and they

restart the protocol. Note that what do we mean by “Alice and Bob abort the protocol” is

“they abort this round of communication.” They abort the quantum and classical informa-

tion they have already shared and the local randomness they have generated. Then, they

restart from the beginning of the protocol.

If |T0| ≥ 2n, Bob randomly chooses a subset Tsift ⊆ T0 such that |Tsift| = 2n to

notify Alice which qubits are encoded in the same basis. They do the random sampling

test among these 2n qubits. Alice randomly chooses a subset Tcheck ⊂ Tsift such that

|Tcheck| = n. She announces Tcheck and sA[i] for all i ∈ Tcheck. With this information,

Bob can calculate the number of the disagreement db. Because the qubits belong to Tsift

are encoded and measured in the same bases, there should not be any disagreement if the

channel has no disturbance. Consequently, db gives an estimation of the disturbance of

the channel.

Information Reconciliation and Privacy Amplification The goal of information rec-

onciliation is to make Alice and Bob to have a same string. To simplify the security proof,

we will realize the information reconciliation by a random linear code as we introduce in

Section 2.5. However, any other method that can achieve the goal with a security guaran-

tee can be applied in the QKD protocol.

Let Tdata = Tsift\Tcheck = {t1, · · · , tn} be the set of indices that are not used in the ran-

dom sampling test. We define sA,data = sA[t1]∥ · · · ∥sA[tn] and sB,data = sB[t1]∥ · · · ∥sB[tn]
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to be Alice’s and Bob’s raw keys before information reconciliation. Alice sets kA,IR =

sA,data as her reconciliated key.

Alice chooses a parameter mIR. She runs the algorithm A_.1M+(kA,IR,mIR) and gets

a matrix HIR and the syndrome r. She announces HIR and r. With the matrix HIR and

the error syndrome r, Bob sets his reconciliated key kB,IR = A_..2+(sB,data, HIR, r). In

Section 2.5, we know that kB,IR will equal to kA,IR with high probability.

Because Eve may have some partial information about kA,IR and kB,IR, the goal of

privacy amplification is to reduce Eve’s information. To achieve the goal, Alice chooses

a parameter mPA and set ℓfin = n −mIR −mPA. Then, she randomly chooses a full rank

ℓfin-by-nmatrixHfin such that the rows ofHfin are linearly independent to the rows ofHIR.

She announces Hfin.

Finally, Alice and Bob compute their own final keys kA,fin = HfinkA,IR and kB,fin =

HfinkB,IR respectively. The output of BB84 protocol isKA = kA,fin and KB = kB,fin.

BB84 protocol is summarized as follow.

BB84 Protocol

Alice and Bob agree on a security parameter n.

State Preparation

SP1 Alice randomly generates two strings sA, hA ∈ {0, 1}(4+η)n. Bob randomly

generates a string hB ∈ {0, 1}(4+η)n.

SP2 Alice sends (4+η)n qubits to Bobwhere the i-th qubit is in the stateHh[i]Xs[i] |0⟩

through the quantum channel.

SP3 When receiving the i-th qubit, Bob measures it in the Z basis if hB[i] = 0

and in the X basis if hB[i] = 1. Bob records the measurement results. Let

sB ∈ {0, 1}(4+η)n denote Bob’s measurement results.

SP4 After all the measurements, Bob announces the fact that he is done.

Parameter Estimation
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PE1 Alice announces hA.

PE2 Bob calculates the set T0 = {i ∈ [(4 + η)n] : hA[i] = hB[i]}. If |T0| < 2n,

they abort the protocol. Otherwise, Bob randomly chooses a subset Tsift ⊆ T0

such that |Tsift| = 2n. Bob announces Tsift.

PE3 Alice randomly chooses a subset Tcheck ⊂ Tsift such that |Tcheck| = n. She

announces Tcheck.

PE4 Alice announces sA[i] for all i ∈ Tcheck.

PE5 Bob calculates the number db of the disagreement, sA[i] ̸= sB[i] for all i ∈

Tcheck. Let eb = db
n . If eb ≥ δth, they abort the protocol. Otherwise, the protocol

proceeds.

Information Reconciliation and Privacy Amplification

IP1 Suppose Tdata = Tsift \Tcheck. Alice sets kA,IR = sA,data as her reconciliated key.

IP2 Alice runs the algorithm A_.1M+(kA,IR,mIR) and gets a matrix HIR and the

syndrome r. LetCIR to be the linear code corresponding toHIR. She announces

HIR and r.

IP3 WithHIR and r, Bob computes his reconciliated key kB,IR = A_..2+(sB,data, HIR, r).

IP4 Alice randomly chooses a full rank ℓfin-by-n matrix Hfin such that the rows of

Hfin are linearly independent to the rows of HIR. She announces Hfin.

IP5 Alice and Bob compute their own final keys kA,fin = HfinkA,IR and kB,fin =

HfinkB,IR respectively.

The final output of BB84 protocol isKA = kA,fin and KB = kB,fin.
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Chapter 4

A Complete Proof of BB84

In this Chapter, we give a complete proof of BB84 by complementary argument. An im-

portant feature of this argument is that we argue the correctness and the secrecy separately.

In Section 4.1, we reduce the security of BB84 to an entanglement-based protocol

>v#5, which will be easier to analyze. Then, we analyze parameter estimation in Section

4.2. Here, we get the correctness of >v#5 and a guarantee about the X measurement

outcomes, which plays a crucial role in the next section.

Section 4.3 is the core of the proof andwewant to show the secrecy of>v#5. In Section

4.3.1, we reduce the secrecy of >v#5 to a complementary protocol *QK1. In *QK1, Bob

measures his system in the X basis so that he will not get a valid key in the end. Thus,

the correctness does not hold in *QK1 and we only have the guarantee of secrecy. Then,

we reduce the secrecy of *QK1 to *QK5 which is easier to analyze. In Section 4.3.2, we

show the secrecy of *QK5.

Finally, we get the composable security of BB84 by combining the correctness and the

secrecy in Section 4.4.

4.1 Reduction to A Virtual Protocol

In this section, we will introduce 5 hybrid protocols. The goal of this section is to reduce

the security of BB84 to an entanglement-based protocol >v#5. To paraphrase, if we can

show that >v#5 is ϵ-secure, then BB84 is also ϵ-secure due to the reduction.
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Hybrid Protocol 1: Alice prepares the state by EPR pairs. In BB84, Alice generates

sA, hA ∈ {0, 1}(4+η)n first and sends qubits in {|0⟩ , |1⟩ , |+⟩ , |−⟩} according to sA and

hA. In >v#1, Alice generates hA ∈ {0, 1}(4+η)n and (4+η)n EPR pairs |Φ+⟩ = 1√
2
(|00⟩+

|11⟩). She applies the Hadamard gates to the second qubits of the EPR pairs according to

hA. Then, she measures the EPR pairs in the Z basis and gets the measurement outcome

sA.

Hybrid Protocol 1 (>v#1)

State Preparation

SP1 Alice randomly generates an (4 + η)n-bit strings hA ∈ {0, 1}(4+η)n. Bob also

randomly generates an (4 + η)n-bit string hB ∈ {0, 1}(4+η)n.

SP2 Alice prepares the state |Φ+⟩⊗(4+η)n, where |Φ+⟩ = 1√
2
(|00⟩ + |11⟩). She

applies the Hadamard gates to the second qubits of the EPR pairs according

to hA, that is, (I ⊗H)hA |Φ+⟩⊗(4+η)n.

SP3 For all i ∈ {1, · · · , (4 + η)n}, Alice measures the first qubit of the i-th EPR

pair in the Z basis and sends the second qubit of each EPR pair to Bob. Let

sA ∈ {0, 1}(4+η)n be the measurement outcomes.

SP4 After receiving (4+η)n qubits, Bob applies the Hadamard gates to these qubits

according to hB. Then, he measures all the (4 + η)n qubits in the Z basis and

let sB ∈ {0, 1}(4+η)n be the measurement outcomes.

SP5 After all measurements, Bob announces the fact that he is done.

Parameter Estimation

PE1 to PE5 are the same as BB84.

Information Reconciliation and Privacy Amplification

IP1 to IP5 are the same as BB84.

Lemma 4.1. BB84 and >v#1 are equivalent.
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Proof. First note that applying a Hadamard gate before a Z measurement is the same as

directly doing a X measurement. Expressing by quantum circuit notation, that is

H
Z

✌✌✌ =
X

✌✌✌ .

If we measure the EPR pair in the Z basis, the result will be Z = 1 with probability 1
2 and

Z = −1 with probability 1
2 . The same also goes forX basis. Thus, the distribution of the

binary string sA in >v#1 is the same as sA in BB84.

In >v#1, for all i ∈ {1, · · · , (4 + η)n}, the post-measurement state of the second

qubit of the i-th EPR pair is Hh[i]Xs[i] |0⟩. Thus, what state that Alice sends through the

quantum channel at SP3 in >v#1 is exactly the same as BB84. Because Alice actually

prepares the same states in both protocols and all the other steps are the same, the two

protocols are equivalent.

Hybrid Protocol 2: Alice defers her measurement. In >v#1, Alice measures the EPR

pair before sending the second qubit of each pair to Bob. In >v#2, Alice defers the mea-

surement after Bob received them.

Hybrid Protocol 2 (>v#2)

State Preparation

• SP1 and SP2 are the same as >v#1.

SP3 Alice does not measure EPR pairs. Instead, she directly sends the second qubit

of each EPR pair to Bob.

SP4 After receiving (4+η)n qubits, Bob applies the Hadamard gates to these qubits

according to hB. Then, he measures all the (4 + η)n qubits in the Z basis and

let sB ∈ {0, 1}(4+η)n be the measurement outcomes.

SP5 After the measurements, Bob announces the fact that he is done.

SP6 Alice measures all her remaining system in the Z basis. Let sA ∈ {0, 1}(4+η)n
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be the measurement outcomes.

Parameter Estimation

PE1 to PE5 are the same as >v#1.

Information Reconciliation and Privacy Amplification

IP1 to IP5 are the same as >v#1.

Lemma 4.2. >v#1 and >v#2 are equivalent.

Proof. Because Eve has no access to Alice’s system, Alice’s measurement operator com-

mutes with Eve’s unitary operators or measurement operators. Thus, in the equivalence

game, the distinguisher D cannot tell apart the timing that Alice measures the first qubits

of EPR pairs. Therefore, the two protocols are equivalent.

Hybrid Protocol 3: Alice announces the bases her used. Alice and Bob now are shar-

ing the EPR pairs. Because Bob can store the received qubits in his quantum memory

and measure them after Alice announces her bases, he does not have to “guess” the bases.

Thus, in the new protocol, >v#3, Bob does not apply Hadamard gates and measure the

qubits in the SP stage. Instead, he chooses his bases hB such that hB = hA after Alice

announces hA. Then he measures the received qubits.

In this case, |T0| is always (4 + η)n so Bob does not have to calculate it. Also, >v#3

is impossible to be aborted due to |T0| at PE1 and PE2. >v#3 is summarized as follow.

Hybrid Protocol 3 (>v#3)

State Preparation

SP1 Alice randomly generates an (4 + η)n-bit strings hA ∈ {0, 1}(4+η)n. Bob does

not generate hB now.

SP2 Alice prepare the state |Φ+⟩⊗(4+η)n. She applies the Hadamard gates to the

second qubits of the EPR pairs according to hA; that is, (I⊗H)hA |Φ+⟩⊗(4+η)n.

SP3 Alice directly sends the second qubit of each EPR pair to Bob.
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SP4 After receiving (4 + η)n qubits, Bob announces the fact that he receives the

qubits. He does not apply Hadamard gates or measure the qubits now.

SP5 Alice measures all her remaining system in the Z basis. Let sA ∈ {0, 1}(4+η)n

be the measurement outcomes.

Parameter Estimation

PE1 Alice announces hA.

PE2 Bob sets hB = hA and applies the Hadamard gates to the receiving qubits

according to hB. Then, he measures all the (4 + η)n qubits in the Z basis and

let sB ∈ {0, 1}(4+η)n be the measurement outcomes.

PE3 Bob randomly chooses a subset Tsift ⊆ [(4 + η)n] with |Tsift| = 2n. Bob an-

nounces Tsift.

PE4 Alice randomly chooses a subset Tcheck ⊂ Tsift with |Tcheck| = n. She announces

Tcheck.

PE5 Alice announces sA[i] for all i ∈ Tcheck.

PE6 Bob calculates the number db of the disagreement, sA[i] ̸= sB[i] for all i ∈

Tcheck. Let eb = db
n . If eb ≥ δ, they abort the protocol. Otherwise, the protocol

proceeds.

Information Reconciliation and Privacy Amplification

IP1 to IP5 are the same as >v#2.

Before proving the relation between >v#2 and >v#3, we prove a revelant claim.

Claim 4.3. The probability that |T0| < 2n in >v#2 is 2−O(nη2).
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Proof. The probability that |T0| < 2n is

2n−1∑

i=0

(
1

2

)(4+η)n((4 + η)n

i

)
≤ 2n ·

(
1

2

)(4+η)n((4 + η)n

2n

)
(4.1)

≤ 2n · 2−(4+η)n+(4+η)nH( 2n
4+η ) (4.2)

≤ 2n · 2−(4+η)2n( η
8+2η )

2

(4.3)

≤ 2n · 2
−n

(
η2

4+η

)

(4.4)

≤ 2n · 2
−n

(
η2

5

)

(4.5)

≤ 2
−n

(
η2

5

)
+log 2n

(4.6)

∈ 2−O(nη
2), (4.7)

where Equation (4.2) comes from
(
an
bn

)
≤ 2anH(b/a) for all a ∈ (0, 1], b ∈ [0, 1] such that

a ≥ b; Equation (4.3) comes from H(x) ≤ 1 − 2(x − 1
2)

2 for x ∈ [0, 1]; Equation (4.5)

comes from η ∈ [0, 1].

Lemma 4.4. If >v#3 is ϵ-secure, then >v#2 is (ϵ+ 2 · 2−O(nη2))-secure.

Proof. Let’s consider the equivalence game 1[mBp>v#2,>v#3
(D). >v#2 behaves exactly

the same as >v#3 if |T0| ≥ 2n in >v#2. The only case that the distinguisher D has the

advantage to tell>v#2 apart from>v#3 is when he sees the protocol aborted at PE2. Thus,

for any distinguisher D we have

Pr
(
1[mBp>v#2,>v#3

(D) = 1
)
≤ 1

2
+

1

2
Pr (>v#2 is aborted at PE2) . (4.8)

Because >v#2 is aborted at PE2 only if |T0| < 2n, Equation (4.8) becomes

Pr
(
1[mBp>v#2,>v#3

(D) = 1
)
≤ 1

2

(
1 + 2−O(nη2)

)
. (4.9)

Because the distinguisherD owns the key registersKA andKB in the end of1[mBp>v#2,>v#3
(D),

D has the full control of the final state. Thus, for some ϵ > 0 if ∥_2�H(>v#2,A)− _2�H(>v#3,A)∥tr =

ϵ, there exists a POVM such that D can distinguish _2�H(>v#2,A) and _2�H(>v#3,A)
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with the probability 1
2(1 + ϵ). However, Equation (4.9) gives an upperbound to ϵ. Conse-

quently, we have

∥_2�H(>v#2,A)− _2�H(>v#3,A)∥tr ≤ 2−O(nη2).

Given two quantum states ρ, σ, tracing out the same subsystems only reduce the trace

distance. Also, if we append the same state to ρ and σ (for example: χ ⊗ ρ and χ ⊗ σ),

the trace distance remains the same. That is what we do in the ideal world. Thus, if we

consider the states of >v#2 and >v#3 in the ideal world, we have

∥A/2�H(>v#2,A)− A/2�H(>v#3,A)∥tr ≤ ∥_2�H(>v#2,A)− _2�H(>v#3,A)∥tr ≤ 2−O(nη2).

By assumption, >v#3 is ϵ-secure, so ∥_2�H(>v#3,A)− A/2�H(>v#3,A)∥tr ≤ ϵ. Finally,

we combine all the results by triangle inequality and we get

∥_2�H(>v#2,A)− A/2�H(>v#2,A)∥tr ≤ ∥_2�H(>v#2,A)− _2�H(>v#3,A)∥tr

+ ∥_2�H(>v#3,A)− A/2�H(>v#3,A)∥tr

+ ∥A/2�H(>v#3,A)− A/2�H(>v#2,A)∥tr

≤ 2−O(nη2) + ϵ+ 2−O(nη2).

Hybrid Protocol 4: Alice only sends 2n EPR pairs. In >v#3, Alice sends (4 + η)n

qubits to Bob and Bob has to choose a subset Tsift. In >v#4, Alice only sends 2n qubits to

Bob. Thus, in this case, Bob does not have to choose the set Tsift.

Hybrid Protocol 4 (>v#4)

State Preparation

SP1 Alice randomly generates an 2n-bit strings hA ∈ {0, 1}2n.

SP2 Alice prepare the state |Φ+⟩⊗2n. She applies the Hadamard gates to the second
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qubits of the EPR pairs according to hA; that is, (I ⊗H)hA |Φ+⟩⊗2n.

SP3 Alice directly sends the second qubit of each EPR pair to Bob.

SP4 After receiving 2n qubits, Bob announces the fact that he receives the qubits.

SP5 Alice measures all her remaining system in the Z basis. Let sA ∈ {0, 1}2n be

the measurement outcomes.

Parameter Estimation

PE1 Alice announces hA.

PE2 Bob sets hB = hA and applies the Hadamard gates to the receiving qubits

according to hB. Then, he measures all 2n qubits in the Z basis and let sB ∈

{0, 1}2n be the measurement outcomes.

PE3 Alice randomly chooses a subset Tcheck ⊂ [2n] such that |Tcheck| = n. She

announces Tcheck.

PE4 Alice announces sA[i] for all i ∈ Tcheck.

PE5 Bob calculates the number db of the disagreement, sA[i] ̸= sB[i] for all i ∈

Tcheck. Let eb = db
n . If eb ≥ δ, they abort the protocol. Otherwise, the protocol

proceeds.

Information Reconciliation and Privacy Amplification

IP1 to IP5 are the same as >v#3.

Lemma 4.5. If >v#4 is ϵ-secure, then >v#3 is also ϵ-secure.

Proof. Consider a virtual protocol oB` that is the same as >v#3 except that Bob chooses

and announces the subset Tsift ⊆ [(4+η)n] at the beginning. Because this change gives the

adversary more power, so it would only make the security worse. Thus, if oB` is ϵ-secure,

then >v#3 is also ϵ-secure.

SupposeA is an adversary attacks onoB` andA′ is an adversary attacks on>v#4. Next,

we are going to show that as long as A achieves ∥_2�H(oB`,A)− A/2�H(oB`,A)∥tr = ϵ,
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A′ can also achieves ∥_2�H(>v#4,A′)− A/2�H(>v#4,A′)∥tr = ϵ. Hence, the security

level of oB` is better than >v#4.

When receiving the 2n qubits in >v#4,A′ prepares (2 + η)n EPR pairs and fills them

into the 2n qubits that Alice sent according to Tsift. Then,A′ applies the same attack asA

does in the virtual protocol. Finally,A′ only sends those qubits in Tsift to Bob so Bob will

only receive 2n qubits. Note that Alice andBob never use those qubits not inTsift, so it does

not matter A′ or Bob discard those qubits not in Tsift. That is, A′ can perfectly reproduce

A’s attack. Thus, if the >v#4 is ϵ-secure, then the virtual protocol is also ϵ-secure.

Hybrid Protocol 5: Alice and Bob defer the measurement on data until IR. In>v#4,

Alice and Bob measure all the 2n qubits in the PE stage. Thus, the input of the IP stage

is two classical strings. In >v#5, they only measure those qubits in Tcheck during the PE

stage. Those qubits in Tdata remain in the quantum state after the PE stage. Let A and B

denote the Alice’s and Bob’s quantum registers for the qubits in Tdata, respectively.1

Hybrid Protocol 5 (>v#5)

State Preparation

SP1 to SP4 are the same as >v#4. Alice does not do SP5.

Parameter Estimation

PE1 Alice announces hA.

PE2 Bob sets hB = hA and applies the Hadamard gates to the receiving qubits

according to hB. He does not measure them now.

PE3 Alice randomly chooses a subset Tcheck ⊂ [2n] such that |Tcheck| = n. She

announces Tcheck.

PE4 For all i ∈ Tcheck, both Alice and Bob measure the i-th qubit of their systems

in the Z basis. Let sA,check and sB,check be the n-bit measurement outcomes of

1Note thatKA andKB are the key registers for the final key, which are different from A and B.

45



doi:10.6342/NTU201802067

Alice and Bob respectively. Alice announces sA,check.

PE5 Bob calculates the number db of the disagreement, sA,check[i] ̸= sB,check[i] for all

i ∈ [n]. Let eb = db
n . If eb ≥ δ, they abort the protocol. Otherwise, the protocol

proceeds.

Information Reconciliation and Privacy Amplification

IP1 Let registerA and registerB be two n-qubit quantum states of Alice’s and Bob’s

systems which are not used for parameter estimation. Alice and Bob measureA

and B in the Z basis and get n-bit strings sA,data and sB,data respectively. Alice

sets her reconciliated key kA,IR = sA,data.

• IP2 to IP5 are the same as >v#4.

Lemma 4.6. >v#4 and >v#5 are equivalent.

Proof. Note that in the>v#4, Alice announces sA[i] for i ∈ Tcheck after Tcheck is announced.

Also, Bob compares sA,check[i] ̸= sB,check[i] for i ∈ Tcheck after Tcheck is announced. Thus,

the protocol works the same if the measurement is defered until Tcheck is announced.

Because the distinguisher D has no access to Alice’s and Bob’s devices, D can not

distinguish the order of the measurement and the choosing of Tcheck. Similarly, Alice

and Bob do not use those qubits Tdata before the IP stage, so the measurement can be

defered to the beginning of the IP stage without noticing by D. Thus, two protocols are

equivalent.

Combining Lemma 4.1,4.2,4.4,4.5,4.6, we can conclude the relation between BB84

and >v#5.

Corollary 4.7. If >v#5 is ϵ-secure, then BB84 is (ϵ+ 2 · 2−O(nη2))-secure.
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4.2 Parameter Estimation

4.2.1 Correctness

In this section, we are going to show that Alice and Bob can agree on a same final key

in the end of >v#5. First, we analyze the measurement outcomes at the beginning of

information reconciliation.

Lemma 4.8. Suppose Alice and Bob run >v#5. Let kA,sift and kB,sift be Alice’s and Bob’s

measurement outcomes at IP1 respectively. Then,

Pr

(
PE passes ∧

n∑

i=1

(kA,sift[i] ̸= kB,sift[i]) ≥ (δth + ϵPE)n

)
≤ e−nϵ

2
PE , (4.10)

where the probability is over the quantum randomness of Alice and Bob’s system and the

choice of Tcheck.

Proof. The key observation is that the choice of Tcheck is independent to the measurements

on Alice’s and Bob’s key registers. Thus, the measurement can be conducted at the be-

ginning of the PE stage (which is exactly >v#4) without changing the statistics and the

post-measurement state of the measurement.

However, if Alice and Bob do the measurement at the beginning of the PE stage, the

choice of Tcheck is just the random sampling test whose result is guaranteed by Lemma 2.8.

Thus, conditioned on the PE stage passes, we have

Pr

(
PE passes ∧

n∑

i=1

(kA,sift[i] ̸= kB,sift[i]) ≥ (δth + ϵPE)n

)
≤ e−2ϵ

2
PE

n·n2

2n(n+1) ≤ e−nϵ
2
PE

Remark 4.9. Note that the right-hand side of Equation (4.10) is independent of δth. That is,

as long as δth ∈ [0, 1], the value of δth does not imfluence the probability bound. However,

the value of δth will imfluence the probability that Alice and Bob abort the protocol. If δth

is too small, the protocol is likely to be aborted and Alice and Bob cannot establish the

key. If δth is too big, information reconciliation needs to tolerate many errors and the key
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rate becomes low. Thus, in practical use, it is important to choose a proper threshold δth.

Now we show the correctness of >v#5.

Lemma 4.10. If we choosemIR = nH2 (δth + ϵPE) +nϵIR, then >v#5 is (2−nϵIR + e−nϵ
2
PE)-

correct.

Proof. From Proposition 2.5, we know that if the errors are less than (δth+ϵPE)n, informa-

tion reconciliation will succeed except the probability 2−nϵIR . On the other hand, if Alice

and Bob abort the protocol, their key registers will always be⊥. Thus, the only possibility

that KA ̸= KB is that they accept the protocol but information reconciliation fails. From

Lemma 4.8, the probability that they accept but the number of errors exceeds (δth + ϵPE)n

is at most e−nϵ2PE . Thus, by union bound, we have

Pr (KA ̸= KB ∧ F = |acc⟩ ⟨acc|) ≤ 2−nϵIR + e−nϵ
2
PE .

4.2.2 Guarantee of X measurement

In this section, we want to analyze the case that Alice and Bob measure their systems in

the X basis at the beginning of the IP stage. As what we did in the previous section, we

want to reduce the analysis into a classical probability case.

Alternative Protocol 1 (�Hi1)

(Alice and Bob apply the Hadamard gates later)

State Preparation

SP1 Alice randomly generates an 2n-bit strings hA ∈ {0, 1}2n.

SP2 Alice prepare the state |Φ+⟩⊗2n. She does not apply the Hadamard gates now.

SP3 Alice directly sends the second qubit of each EPR pair to Bob.

SP4 After receiving 2n qubits, Bob announces the fact that he receives the qubits.
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Parameter Estimation

PE1 Alice announces hA.

PE2 Bob sets hB = hA. He does not apply the Hadamard gates and does not measure

them now.

PE3 Alice randomly chooses a subset Tcheck ⊂ [2n] such that |Tcheck| = n. She

announces Tcheck.

PE4 For all i ∈ Tcheck, both Alice and Bob apply a Hadamard gate to the i-th qubit

of their systems if hA[i] = 1 and do nothing if hA[i] = 0.

PE5 For all i ∈ Tdata, both Alice and Bob apply a Hadamard gate to the i-th qubit of

their systems if hA[i] = 1 and do nothing if hA[i] = 0.

PE6 For all i ∈ Tcheck, both Alice and Bob measure the i-th qubit of their systems

in the Z basis. Let sA,check and sB,check be the n-bit measurement outcomes of

Alice and Bob, respectively. Alice announces sA,check.

PE7 Bob counts the number db of i ∈ [n] such that sA,check[i] ̸= sB,check[i]. Let

eb =
db
n . If eb ≥ δth, they abort the protocol. Otherwise, the protocol proceeds.

Information Reconciliation and Privacy Amplification

IP1 to IP5 are the same as >v#5.

Lemma 4.11. Suppose Alice and Bob run �Hi1. Let kA,sift and kB,sift be Alice’s and Bob’s

measurement outcomes in the Z basis at IP1, respectively. Then,

Pr

(
PE passes ∧

n∑

i=1

(kA,sift[i] ̸= kB,sift[i]) ≥ (δth + ϵPE)n

)
≤ e−nϵ

2
PE ,

where the probability is over the quantum randomness of Alice and Bob’s system and the

choice of Tcheck.

Proof. There are two differences between>v#5 and�Hi1. First, Alice applies theHadamard

gates to the first qubits of the EPR pairs in �Hi1 while she applies to the second qubits in
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>v#5. Second, the timing of applying the Hadamard gates are different. Alice and Bob de-

fer it until Alice announces Tcheck in �Hi1. We are going to show that these two differences

do not change the guarantee of the PE stage.

First, a direct calculation shows that

(H⊗I) |Φ+⟩ = 1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=
1

4

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=
1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

= (I⊗H) |Φ+⟩ .

(4.11)

Equation (4.11) implies that if Alice applies the Hadamard gates to the first qubits of the

EPR pairs, namely (H ⊗ I)hA |Φ+⟩⊗2n, she actually generates the same state of SP2 in

>v#5.

Second, because the adversary has no access to Alice’s system, the operation (H ⊗

I)hA |Φ+⟩⊗2n can defer until the end of the SP stage. Also, in �Hi1, PE4 and PE5 actually

ask Alice and Bob apply HhA for all i ∈ [2n]. Thus, applying the Hadamard gates is

independent to Tcheck. Therefore, the argument of Lemma 4.8 applies.

Alternative Protocol 2 (�Hi2)

(Alice and Bob flip the Hadamard basis for Tdata)

State Preparation

SP1 to SP4 are the same as �Hi1.

Parameter Estimation

• PE1 to PE3 are the same as �Hi1.

PE4 For all i ∈ Tcheck, both Alice and Bob apply a Hadamard gate to the i-th qubit

of their systems if hA[i] = 1 and do nothing if hA[i] = 0.

PE5 For all i ∈ Tdata, both Alice and Bob apply a Hadamard gate to the i-th qubit of

their systems if hA[i] = 0 and do nothing if hA[i] = 1.
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• PE6 and PE7 are the same as �Hi1.

Information Reconciliation and Privacy Amplification

IP1 to IP5 are the same as �Hi1.

Lemma 4.12. Suppose Alice and Bob run �Hi2. Let kA,sift and kB,sift be Alice’s and Bob’s

measurement outcomes in the Z basis at IP1 respectively. Then,

Pr

(
PE passes ∧

n∑

i=1

(kA,sift[i] ̸= kB,sift[i]) ≥ (δth + ϵPE)n

)
≤ e−nϵ

2
PE ,

where the probability is over the quantum randomness of Alice and Bob’s system, the

choice of Tcheck and the choice of hA.

Proof. Given a set Tcheck ⊂ [2n], we define fT : {0, 1}2n → {0, 1}2n by

⎧
⎪⎨

⎪⎩

fT (x)[i] = hA[i], if i ∈ Tcheck;

fT (x)[i] = 1− hA[i], if i ̸∈ Tcheck.

Suppose Alice chooses hA in �Hi1 and chooses h′A in �Hi2. Then, �Hi1 will be executed

exactly the same as �Hi2, if h′A = fT (hA). Because fT is bijective, for any hA ∈ {0, 1}2n,

there exists one and only one h′A satisfies h′A = fT (hA).

Note that Lemma 4.11 holds for any hA ∈ {0, 1}2n and hA is chosen uniformly at

random. Thus, we have this lemma.

However, for those i ∈ Tdata, applying H1−hA[i] followed by a Z measurement is ex-

actly the same as applying HhA[i] followed by a X measurement. Thus, we have the

following corollary.

Corollary 4.13. Suppose Alice and Bob run >v#5. If Alice and Bob measure register A

and register B in the X basis with the measurement outcomes µA and µB respectively,

then

Pr

(
PE passes ∧

n∑

i=1

(µA[i] ̸= µB[i]) ≥ (δth + ϵPE)n

)
≤ e−nϵ

2
PE ,

where the probability is over the quantum randomness of Alice and Bob’s system, the

choice of Tcheck and the choice of hA.
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4.3 Complementary Argument

4.3.1 More Hybrid Argument

In this section, we will introduce 5 hybrid protocols. The goal of this section is to reduce

the secrecy of >v#5 to an complementary protocol *QK5. To paraphrase, if we can show

that *QK5 is ϵ-secret, then >v#5 is also ϵ-secret due to the reduction.

Note that the hybrid argument starts from>v#5 and an complementary protocol*QK1,

instead of �Hi1 or �Hi2. Also note that, the reduction in this section only cares about the

secrecy instead of the security, because Bob does not generate a valid key here.

Complementary Protocol 1: Bob measures his system in the X basis so he does not

yield a valid key. There are two difference between >v#5 and *QK1. First, Bob mea-

sures registerB in theX basis in*QK1 while he usesZ basis in>v#5. Bob’smeasurement

outcome in *QK1 is denoted by µ. Second, Bob does not yield a reconciliated key so he

just outputs 0ℓfin in the final key register.

Complementary Protocol 1 (*QK1)

State Preparation

SP1 to SP4 are the same as >v#5.

Parameter Estimation

PE1 to PE5 are the same as >v#5.

Information Reconciliation and Privacy Amplification

IP1 Alice measures register A in the Z basis and Bob measures register B in theX

basis. Let sA,data be Alice’s measurement outcome and µ be Bob’s measurement

outcome. Alice sets her reconciliated key kA,IR = sA,data.

IP2 Alice runs the algorithm A_.1M+(kA,IR,mIR) and gets a matrix HIR and the

syndrome r. LetCIR to be the linear code corresponding toHIR. She announces
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HIR and r.

IP3 Alice randomly chooses a full rank ℓfin-by-n matrix Hfin such that the rows of

Hfin are linearly independent to the rows of HIR. She announces Hfin.

IP4 Alice computes her own final keys kA,fin = HfinkA,IR. Bob sets his key register

as 0ℓfin .

The final output of *QK1 is KA = kA,fin and KB = 0ℓfin .

Lemma 4.14. If *QK1 is ϵ-secret, then >v#5 is also ϵ-secret.

Proof. Let ρKAKBFCE = _2�H (>v#5,A) and τKAKBFCE = _2�H (*QK1,A) for some

adversary A. Note that the SP and PE stages of >v#5 and *QK1 are the same, so the

probabilities that they accept the protocols should be same.

All Alice’s operations in the IP stage are independent to Bob’s system. Thus, the distri-

bution of error syndrome r, VPA and the final key kA are the same between two protocols.

Therefore, the registers KA and C of ρKAKBFCE and τKAKBFCE are the same. Also, be-

cause the adversary has no access to Bob’s system, the adversary cannot distinguish which

basis Bob uses. Thus, Eve’s system E is also the same between two protocols. Combine

all the arguments above, we have

∥∥TrB
(
ρ∧accKAKBFCE

)
− TrB

(
τ∧accKAKBFCE

)∥∥
tr
= 0,

where ρ∧accKAKBFCE and τ∧accKAKBFCE are the subnormalized states that Alice and Bob accept

the protocols. If

∥∥TrB
(
ρ∧accKAKBFCE

)
− χA ⊗ TrAB

(
ρ∧accKAKBFCE

)∥∥
tr
≤ ϵ,

53



doi:10.6342/NTU201802067

then

∥∥TrB
(
τ∧accKAKBFCE

)
− χA ⊗ TrAB

(
τ∧accKAKBFCE

)∥∥
tr

≤
∥∥TrB

(
τ∧accKAKBFCE

)
− TrB

(
ρ∧accKAKBFCE

)∥∥
tr
+
∥∥TrB

(
ρ∧accKAKBFCE

)
− χA ⊗ TrAB

(
τ∧accKAKBFCE

)∥∥
tr

≤
∥∥TrB

(
τ∧accKAKBFCE

)
− TrB

(
ρ∧accKAKBFCE

)∥∥
tr
+
∥∥TrB

(
ρ∧accKAKBFCE

)
− χA ⊗ TrAB

(
ρ∧accKAKBFCE

)∥∥
tr

=0 + ϵ.

Complementary Protocol 2: Bob annouces his X measurement outcomes. The two

protocols *QK1 and *QK2 are the same except that Bob annouces µ after IP1 in *QK2

while he does not annouces µ in *QK1.

Complementary Protocol 2 (*QK2)

State Preparation

SP1 to SP4 are the same as *QK1.

Parameter Estimation

PE1 to PE5 are the same as *QK1.

Information Reconciliation and Privacy Amplification

IP1 Alice measures register A in the Z basis and Bob measures register B in theX

basis. Let sA,data be Alice’s measurement outcome and µ be Bob’s measurement

outcome. Alice sets her reconciliated key kA,IR = sA,data.

IP2 Bob announces µ.

IP3 Alice runs the algorithm A_.1M+(kA,IR,mIR) and gets a matrix HIR and the

syndrome r. LetCIR to be the linear code corresponding toHIR. She announces

HIR and r.
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IP4 Alice randomly chooses a full rank ℓfin-by-n matrix Hfin such that the rows of

Hfin are linearly independent to the rows of HIR. She announces Hfin.

IP5 Alice computes her own final keys kA,fin = HfinkA,IR. Bob sets his key register

as 0ℓfin .

The final output of *QK2 is KA = kA,fin and KB = 0ℓfin .

Lemma 4.15. If *QK2 is ϵ-secret, then *QK1 is also ϵ-secret.

Proof. The only difference between the two protocols is whether Bob announces µ. Be-

cause annoucing µ only gives the adversary more power, the secrecy of *QK2 implies the

secrecy of *QK1.

Complementary Protocol 3: Alice does a complex quantum measurement. The two

protocols *QK2 and *QK3 are the same except that Alice measures register A in the Z

basis at IP1 of *QK2, while Alice measures A by the observables {ZHIR[j]}i=1,··· ,mIR and

{ZHfin[i]}i=1,··· ,ℓfin in *QK3.

Complementary Protocol 3 (*QK3)

State Preparation

SP1 to SP4 are the same as *QK2.

Parameter Estimation

PE1 to PE5 are the same as *QK2.

Information Reconciliation and Privacy Amplification

IP1 Bob measures register B in the X basis and let µ be Bob’s measurement out-

come.

IP2 Bob announces µ.

IP3 Alice randomly chooses a linear code CIR from Cn,n−mIR . LetHIR to be a parity

check matrix of CIR. Alice measures register A according to mIR observables
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{ZHIR[j]}i=1,··· ,mIR . Let r denote the measurement outcome. She announcesHIR

and r.

IP4 Alice randomly chooses a full rank ℓfin-by-n matrix Hfin such that the rows of

Hfin are linearly independent to the rows of HIR. She announces Hfin.

IP5 Alice measures A by the observables {ZHfin[i]}i=1,··· ,ℓfin to determine the ℓfin-bit

final key kA.

The final output of *QK3 is KA = kA,fin and KB = 0ℓfin .

Lemma 4.16. If *QK3 is ϵ-secret, then *QK2 is also ϵ-secret.

Proof. Note that “measuring in the Z basis” is actually measuring by the observables

{Zci}i=1,··· ,n, where ci is an all zero binary string except that the i-th bit is one.

Because {Zci}i=1,··· ,n, {ZHIR[j]}i=1,··· ,mIR and {ZHfin[i]}i=1,··· ,ℓfin are all composed by

Pauli-Z matrices, all the observables are commutative. Thus, it does not matter Alice mea-

suresA by {Zci}i=1,··· ,n beforehand ormeasures it by {ZHIR[j]}i=1,··· ,mIR and {ZHfin[i]}i=1,··· ,ℓfin .

The post-measurement states and the statistics of two classical strings r and kA are the

same between two protocols. Therefore, the two protocols are equivalent which implies

the two protocols have the same secrecy.

Complementary Protocol 4: Alice tries to fix her registerA to the state |+⟩⊗n. There

are three difference between *QK3 and *QK4. First, Alice needs to estimate the distance

between the state in A and |+⟩⊗n. Thus, Alice does a sub-routine similar to IP3 in *QK3,

but now she measures her state by a set of observables consisting of PauliX and µ serves

as the error syndrome. Precisely, Alice randomly chooses a linear codeCPA from Cn,n−mPA

such that CPA ⊆ CIR. LetH⊥PA to be a parity check matrix of C⊥PA. Alice measures register

A bymPA observables {XH⊥
PA[j]}i=1,··· ,mPA and gets themPA-bit measurement outcome rPA.

Alice calculates xPA = A_..2+(µ,H⊥PA, rPA), which indicates the distance between the

state in A and |+⟩⊗n.

Second, Alice explicitly does the error correction toA. That is, she applies the unitary

operation ZxPA to A. Ideally, the state of register A is |+⟩⊗n.
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Third, the choice ofHfin has an extra constraint: the rows ofHfin should be orthogonal

to the rows of H⊥PA.

Complementary Protocol 4 (*QK4)

State Preparation

SP1 to SP4 are the same as *QK3.

Parameter Estimation

PE1 to PE5 are the same as *QK3.

Information Reconciliation and Privacy Amplification

• IP1 to IP3 are the same as *QK3.

IP4 Alice randomly chooses a linear code CPA from Cn,n−mPA such that CPA ⊆ CIR.

Let H⊥PA to be a parity check matrix of C⊥PA. Alice measures register A by mPA

observables {XH⊥
PA[j]}i=1,··· ,mPA and gets themPA-bit measurement outcome rPA.

Alice calculates xPA = A_..2+(µ,H⊥PA, rPA).

IP5 Alice applies the unitary operationZxPA toA. (This step can be viewed as trying

fix A to the state |+⟩⊗n.)

IP6 Alice randomly chooses a full rank ℓfin-by-n matrix Hfin such that the rows

of Hfin are orthogonal to the rows of H⊥PA and the rows of Hfin are linearly

independent to the rows of HIR. She announces Hfin.

IP7 Alice measures A by the observables {ZHfin[i]}i=1,··· ,ℓfin to determine the ℓfin-bit

final key kA.

The final output of *QK4 is KA = kA,fin and KB = 0ℓfin .

Lemma 4.17. If *QK4 is ϵ-secret, then *QK3 is also ϵ-secret.

Proof. Because the rows ofH⊥PA are orthogonal to the rows ofHfin, the observables in the

set {XH⊥
PA[j]}i=1,··· ,mPA and the observables in the set {ZHfin[j]}i=1,··· ,ℓfin commute. Besides,
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because the observables in the set {ZHfin[i]}i=1,··· ,ℓfin and ZxPA are all consist of Pauli Z,

they also commute. Thus, IP6 and IP7 can be done before IP4 in *QK4. The final key is

generated before IP4 and IP5 without influencing the final key. Thus, the two protocols

have the same secrecy.

Complementary Protocol 5: Alice does the phase error correction earlier. The only

difference between*QK4 and*QK5 is that themeasurement by the observables {ZHIR[j]}i=1,··· ,mIR

is defered after the error operation ZxPA. Thus, after Alice chooses the code CIR at IP3,

she does not measures A immediately. Instead, she chooses CPA first and tries to fix A to

the state |+⟩⊗n. Then, she measures A according to mIR observables {ZHIR[j]}i=1,··· ,mIR

and announces the error syndrome r.

Complementary Protocol 5 (*QK5)

State Preparation

SP1 to SP4 are the same as *QK4.

Parameter Estimation

PE1 to PE5 are the same as *QK4.

Information Reconciliation and Privacy Amplification

IP1 Bob measures register B in the X basis and let µ be Bob’s measurement out-

come.

IP2 Bob announces µ.

IP3 Alice randomly chooses a linear code CIR from Cn,n−mIR . LetHIR to be a parity

check matrix of CIR.

IP4 Alice randomly chooses a linear code CPA from Cn,n−mPA such that CPA ⊆ CIR.

Let H⊥PA to be a parity check matrix of C⊥PA. Alice measures register A by mPA

observables {XH⊥
PA[j]}i=1,··· ,mPA and gets themPA-bit measurement outcome rPA.
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Alice calculates xPA = A_..2+(µ,H⊥PA, rPA).

IP5 Alice applies an unitary operation ZxPA toA. (This step can be viewed as trying

fix A to the state |+⟩⊗n.)

IP6 AlicemeasuresA according tomIR observables {ZHIR[j]}i=1,··· ,mIR . Let r denote

the measurement outcome. She announces HIR and r.

IP7 Alice randomly chooses a full rank ℓfin-by-n matrix Hfin such that the rows

of Hfin are orthogonal to the rows of H⊥PA and the rows of Hfin are linearly

independent to the rows of HIR. She announces Hfin.

IP8 Alice measures A by the observables {ZHfin[i]}i=1,··· ,ℓfin to determine the ℓfin-bit

final key kA.

The final output of *QK5 is KA = kA,fin and KB = 0ℓfin .

Lemma 4.18. If *QK5 is ϵ-secret, then *QK4 is also ϵ-secret.

Proof. Because CPA ⊆ CIR, the rows of H⊥PA are orthogonal to the rows ofHIR. Thus, the

observables in the set {XH⊥
PA[j]}i=1,··· ,mPA and the observables in the set {ZHIR[j]}i=1,··· ,mIR

commute. Because the observables in the set {ZHfin[i]}i=1,··· ,ℓfin , the observables in the set

{ZHIR[j]}i=1,··· ,mIR and Zx
PA all consist of Pauli Z, they all mutually commute. Hence, the

measurements by {ZHIR[j]}i=1,··· ,mIR can be defered to IP8 without affecting the measure-

ments by {XH⊥
PA[j]}i=1,··· ,mPA, {ZHfin[i]}i=1,··· ,ℓfin and theirselves.

4.3.2 Secrecy

Now, we are going to prove the secrecy of *QK5. First, we prove two lemmas.

Lemma 4.19. SupposeM is a full rankm-by-nmatrix such thatm < n and the entries of

M are in {0, 1}. If s is chosen uniformly from {0, 1}n at random, then, for all t ∈ {0, 1}m,

it holds that

Pr
s←{0,1}n

(Ms = t) =
1

2m
.
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Proof. First, we apply the Guassian elimination toM and have a decompositionM = LR,

where L is anm-by-m lower trianguler matrix and R is anm-by-n matrix in row echelon

form. Because M is full rank, each row of R has a pivot (a pivot element is the first

non-zero element in a row such that all the elements below it are zero).

Then, suppose X, Y are two random variables take value in {0, 1}. If Y is uniformly

distributed over {0, 1}, then nomatter what distribution ofX is, the randomvariableX⊕Y

is uniformly distributed over {0, 1}. This is the core idea of one-time pad.

Generally, let X1, · · · , Xl, Y1, · · · , Yl be random variables such that Xi, Yi ∈ {0, 1}

for all i. Suppose each Yi is independently uniformly distributed over {0, 1} for all i and

Xi can be in arbitrary distribution for all i. Then, eachXi⊕Yi is independently uniformly

distributed over {0, 1} for all i.

Back to our lemma, suppose s′ = Rs. Then, the i-bit of s′, namely s′[i], comes from

the inner product ofR[i] and s. Because s is chosen uniformly from {0, 1}n at random, the

product of the pivot element inR[i] and the corresponding bit in s is uniformly distributed

over {0, 1}, which serves as the one-time pad for the i-bit of s′. Thus, for all t ∈ {0, 1}m,

it holds that

Pr
s←{0,1}n

(Rs = t) =
1

2m
,

which implies Rs is uniformly distributed over {0, 1}m. Next, because L represents the

row operations of the Guassian elimination, the diagonal elements of L must all be 1.

These diagonal elements play the same roles as the pivots of R. Thus, for all t ∈ {0, 1}m,

it holds that

Pr
s←{0,1}n

(LRs = t) =
1

2m
.

Lemma 4.19 implies that if we have a secret key k and a full rank matrix H , then Hk

is also secret.

Lemma 4.20. Suppose Alice measures registerA in theX basis after the step IP4 of*QK5

and gets the measurement outcome ξ. Then, if we choose mPA = nH2(δth + ϵPE) + nϵPA,
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it holds that

Pr (PE passes ∧ ξ = 0n) ≤ e−nϵ
2
PE + 2 · 2−nϵPA .

Proof. From Corollary 4.13, we know that if Alice measures A in the X basis after IP2

and gets the measurement outcome µA, Then,

Pr

(
PE passes ∧

n∑

i=1

(µA[i] ̸= µ[i]) ≥ (δth + ϵPE)n

)
≤ e−nϵ

2
PE ,

Let ci be an all zero binary string except the i-th bit is one. Because {XHPA[j]}i=1,··· ,mPA

and {Xci}i=1,··· ,n commute, whether Alice measures A in the X basis after IP3 does not

change the statistics of the measurement at IP4.

If H⊥PA is decided by uniformly chosen code from Cn,n−mPA, we can directly apply the

Proposition 2.5. However, the choice of CPA is under the constraintCPA ⊆ CIR so that C⊥PA

is not chosen uniformly at random. In the following, we are going to show that we can

still get a similar guarantee of the Proposition 2.5 even in this case.

Suppose HIR and H⊥PA are the parity check matrices that Alice chooses at IP3 and

IP4 whose corresponding linear code satisfy CPA ⊆ CIR. Suppose we uniformly choose

a permutation matrix2 P at random. Let H ′IR = HIRP and H ′⊥PA = H⊥PAP . Then, the

corresponding linear code C ′IR and C ′⊥PA also satisfy C ′PA ⊆ C ′IR. Because both HIR and P

are chosen uniformly at random, the distribution of HIR and H⊥PA are the same as H ′IR and

H ′⊥PA.

In the proofs of the Proposition 2.4 and the Proposition 2.5, the reason why we need a

random code is to make the positions of errors uniformly distributed. However, because

the distribution of HIR and H⊥PA are the same as H ′IR and H ′⊥PA, HIR and H⊥PA are already

equiped with a random permutation. The only problem is thatHIR andH⊥PA share the same

permutation.

From the Proposition 2.5, we know that the probability that Eve successfully finds a

position of errors is upperbounded some value p. Then, for a fixed permutation, if Eve

has two chances to guess the position, the probability that Eve succeed at least once is

2A permutation matrix is a matrix obtained by permuting the rows of an identity matrix.
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upperbounded by 2p according to the union bound.

Consequently, we have

Pr (PE passes ∧ xPA ̸= µA) ≤ e−nϵ
2
PE + 2 · 2−nϵPA .

Thus, after we apply the operation ZxPA at IP4, the measurement outcome ξ will satisfy

Pr (PE passes ∧ ξ ̸= 0n) ≤ e−nϵ
2
PE + 2 · 2−nϵPA .

Now, we can prove the secrecy of *QK5.

Lemma4.21. If we choosemPA = nH2(δth+ϵPE)+nϵPA, then*QK5 is 2
√
e−nϵ

2
PE + 2 · 2−nϵPA-

secret.

Proof. Now we analyze the quantum state after IP5. Let τ∧accA be the subnormalized state

of register A such that we drop the portion of rejection. Thus, the probability pacc that

Alice and Bob accept the protocol is pacc = Tr (τ∧accA ). From Lemma 4.20, we know that

if we measure A in the X basis, the measurement outcome ξ would satisfy

Pr (PE passes ∧ ξ ̸= 0n) ≡ pfail ≤ e−nϵ
2
PE + 2 · 2−nϵPA .

Because ξ = 0n corresponds to the projector |+⊗n⟩ ⟨+⊗n|, we have

⟨+⊗n|τ∧accA |+⊗n⟩ = pacc − pfail.

Let τ |accA = 1
pacc
τ∧accA be the re-normalized state conditioned on Alice and Bob accept the

protocol. We have

F (τ |accA , |+⊗n⟩ ⟨+⊗n|) = ⟨+⊗n|τ |accA |+⊗n⟩ = 1

pacc
⟨+⊗n|τ∧accA |+⊗n⟩ = 1− pfail

pacc
.

Now we analyze the measurement at IP6 and IP8. Because the observables in the set
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{ZHIR[j]}i=1,··· ,mIR and {ZHfin[i]}i=1,··· ,ℓfin consist of Pauli Z, the statistics of the measure-

ment outcomes remain the same if Alice measures register A in the Z basis before IP6.

Thus, suppose Alice does an imaginary step before IP6:

• IP5.5 Alice measures A in the Z basis and gets a measurement outcome µZ .

Let τ ′|accA be the normalized state after IP5.5 conditioned on Alice and Bob accept the

protocol. Because the measurement outcome of |+⟩ in the Z basis is uniformly at random,

the state |+⊗n⟩ ⟨+⊗n| becomes 1
2n

∑n
i=1 |i⟩ ⟨i| after the step IP5.5. Because the fidelity is

non-decreasing under quantum operation, we have

F

(
τ ′|accA ,

1

2n

n∑

i=1

|i⟩ ⟨i|
)

≥ F (τ |accA , |+⊗n⟩ ⟨+⊗n|) = 1− pfail
pacc

.

If Alice does the imaginary step IP5.5, measuring registerA by observables {ZHIR[j]}i=1,··· ,mIR

and {ZHfin[i]}i=1,··· ,ℓfin are equivalent to calculates r = HIRµZ and kA = HfinµZ respec-

tively. By Lemma 4.19, we know that if the register A is in the state 1
2n

∑n
i=1 |i⟩ ⟨i|, r and

kA will be uniformly distributed and independent to each other.

Suppose ρKAKBFCE = _2�H (*QK5,A) is a normalized state given an adversaryA and

ρ∧accKAKBFCE is the sub-normalized state that we drop the portion of rejection in ρKAKBFCE .

Let ρ|accKAKBFCE = 1
pacc
ρ∧accKAKBFCE and ρ|accA = TrBFCE

(
ρ|accKAKBFCE

)
. Because the fidelity

is non-decreasing after IP6, IP7 and IP8, we have

F

(
ρ|accKA

,
1

2ℓfin

∑

k∈K

|k⟩ ⟨k|
)

≥ F

(
τ ′|accA ,

1

2n

n∑

i=1

|i⟩ ⟨i|
)

= 1− pfail
pacc

.

Now we consider Eve’s system. By Corollary 2.2, there exists a state σFCE ∈ HFCE

such that

F

(
ρ|accKAFCE,

1

2ℓfin

∑

k∈K

|k⟩ ⟨k|⊗ σFCE

)
= F

(
ρ|accKA

,
1

2ℓfin

∑

k∈K

|k⟩ ⟨k|
)

= 1− pfail
pacc

.
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By the relation between the trace distance and the fidelity, we have

∥∥∥∥∥ρ
|acc
KAFCE − 1

2ℓfin

∑

k∈K

|k⟩ ⟨k|⊗ σFCE

∥∥∥∥∥
tr

≤

√√√√1− F

(
ρ|accKAFCE,

1

2ℓfin

∑

k∈K

|k⟩ ⟨k|⊗ σFCE

)
=

√
pfail
pacc

.

Because ρ∧accKAFCE = pacc · ρ|accKAFCE , multiply by pacc, we have

∥∥∥∥∥ρ
∧acc
KAFCE − 1

2ℓfin

∑

k

|k⟩ ⟨k|⊗ σ∧accFCE

∥∥∥∥∥
tr

=
√
pacc

√
pfail ≤

√
pfail,

where σ∧accFCE is defined by pacc · σFCE . By Lemma 3.5, we have

∥∥∥∥∥ρ
∧acc
KAFCE − 1

2ℓfin

∑

k

|k⟩ ⟨k|⊗ ρ∧accFCE

∥∥∥∥∥
tr

≤ 2 ·

∥∥∥∥∥ρ
∧acc
KAFCE − 1

2ℓfin

∑

k

|k⟩ ⟨k|⊗ σ∧accFCE

∥∥∥∥∥
tr

≤ 2
√
pfail ≤ 2

√
e−nϵ

2
PE + 2 · 2−nϵPA . (4.12)

Because the argument above holds for any adversaryA, we conclude that*QK5 is 2
√
e−nϵ

2
PE + 2 · 2−nϵPA-

secret.

Combining Lemma 4.14, 4.15, 4.16, 4.17 and 4.21, we can conclude this section with

the following corollary.

Corollary 4.22. If we choosemPA = nH2(δth+ϵPE)+nϵPA, then>v#5 is 2
√
e−nϵ

2
PE + 2 · 2−nϵPA-

secret.

4.4 The Security of BB84

Theorem 4.23 (the security of BB84). Let mIR = nH2 (δth + ϵPE) + nϵIR and mPA =

nH2(δth + ϵPE) + nϵPA. Then, BB84 is f (n, η, ϵPE, ϵIR, ϵPA)-secure with the key rate

RBB84 =
1

4 + η
[1−H2 (δth + ϵPE)−H2(δth + ϵPE)− ϵIR − ϵPA] , (4.13)
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where

f (n, η, ϵPE, ϵIR, ϵPA) = e−nϵ
2
PE + 2−nϵIR + 2

√
e−nϵ

2
PE + 2 · 2−nϵPA + 2 · 2−O(nη2).

Proof. From Lemma 4.10, we know that >v#5 is (2−nϵIR + e−nϵ
2
PE)-correct if we choose

mIR = nH2 (δth + ϵPE)+nϵIR. FromCorollary 4.22, we know that>v#5 is 2
√
e−nϵ

2
PE + 2 · 2−nϵPA-

secret, if we choosemPA = nH2(δth+ ϵPE)+nϵPA. From Proposition 3.4, we can combine

the correctness and the secrecy so >v#5 is(
e−nϵ

2
PE + 2−nϵIR + 2

√
e−nϵ

2
PE + 2 · 2−nϵPA

)
-secure. Finally, by Corollary 4.7, the security

of BB84 can be reduced to >v#5 with the parameter loss 2 · 2−O(nη2). Thus, we have that

BB84 is f (n, η, ϵPE, ϵIR, ϵPA)-secure, where

f (n, η, ϵPE, ϵIR, ϵPA) = e−nϵ
2
PE + 2−nϵIR + 2

√
e−nϵ

2
PE + 2 · 2−nϵPA + 2 · 2−O(nη2).

As for the key rate, Alice sends (4+η)n qubits in the SP stage, and the final key length

is ℓfin = n−mIR −mPA. Thus, the key rate is

RBB84 =
ℓfin

(4 + η)n
=

1

4 + η
[1−H2 (δth + ϵPE)−H2(δth + ϵPE)− ϵIR − ϵPA] .

We make a brief remark about the key rate when n goes to infinity. In the early de-

velopment of QKD, most of the papers only analyzed the key rate asymptotically. In

Theorem 4.23, for all η, ϵPE, ϵIR, ϵPA > 0, f (n, η, ϵPE, ϵIR, ϵPA) can be arbitrary small as n

goes to infinity. Thus, we can choose η, ϵPE, ϵIR, ϵPA as a very small value and Equation

(4.13) becomes

RBB84 =
1

4
[1− 2H2 (δth)] ,

which meets the results of previous works [SP00, GLLP04].
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Chapter 5

Conclusion

In this thesis, we gave a self-contained security proof of BB84 by the uncertainty prin-

ciple, with full explanation of the security definitions and necessary assumptions. We

also showed that the uncertainty-principle-style proof can be applied to the protocol that

information reconciliation is done without encryption, which is the case in the practical

use.

To make the reduction rigorous and precise, we formulated the notion of equivalence

by the indistinguishable game. In Section 4.1, we applied this new definition in the proof

and analyzed the parameter loss precisely. Besides, we specify information reconciliation

such that only Alice announces the error syndrome, so Bob can change his measurement

bases from Z to X without detecting by Eve. Thus, the communication of information

reconciliation, the error syndrome, does not need to be encrypted. Finally, we get a precise

relation between the key rate and the security level of BB84 in Section 4.4.

5.1 Future Works

As we mentioned in Section 1.3, there are three main techniques to prove the security of

QKD. Tomamichel and Leverrier [TL17] gave a self-contained proof based on entropic

relations. It is valuable to give a self-contained literature for the entanglement-distillation-

style proof, especially in the finite key regime.

Also, it is interesting to compare different kinds of proofs. In Section 4.1, we reduced
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the security of BB84 to another entanglement-based protocol >v#5. This reduction is also

the essential part of the entanglement-distillation-style proof in [SP00]. Koashi noticed

that the control complementary observable is correlated to the entanglement distillation

[Koa07]. It is interesting to compare these two kinds of proof in the context of security

proof.

In the entropic-relation-style proof, the length of the final key is guaranteed by leftover

hash lemma. It is also interesting whether leftover hash lemma is correlated with the

complementarity or entanglement distillation.
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