A 2B REERTNERERIRZL A
78 3 X
Department of Electrical Engineering

College of Electrical Engineering and Computer Science
National Taiwan University
Master Thesis

BT EETRNRDMEFERZ 5 MR
Analysis and Comparison of Security Proofs

of Quantum Key Distribution

55 %
Hao Chung

16 EHIR  BMREE L
Advisor: Chen-Mou Cheng, Ph.D.

FERR 107 %+ 7 A
July, 2018

d0i:10.6342/NTU201802067



il

d0i:10.6342/NTU201802067



B2 KEmE 423 3L
DRXREBEeELE

ETEHRIENRENEAI S ELR
Analysis and Comparison of Security Proofs

of Quantum Key Distribution

Wik E (£33 R05921076) AR LB RELEEHR LIRS
% ”’ﬁizzéd:ﬁ-m X ﬁ"?’al 107 7R 2T BATFHEREZEESE
BEOREAK 0 FLES
(%%)

2R ER éf;ﬁ&%
(45 442

A% L
4

)

Sy

mn:

=

g

% E4E %/\ é A (32)



v

d0i:10.6342/NTU201802067



RS

ZF %454 (quantum key distribution, QKD) & —#& R 42473 A

AR 3% (computational assumption) BP 7] 4 i@ 34 7 # A 48 ] & 28
B EBREFEA L A BB AR TIREYH QKD EEUR
5% B4 > B ¥ decoy-method BEZTF » BAIMIAEH LT ER M
QKD #h & -

ERBXF » K144 BB Hh M T R ENRAMFNH - —AR
Hoyg sy Raed TR, 'k, TBEER ) =@ -

WXHNREMERLTRENNE > BF @y W AR ARG T
28 MB3% 0 A EYI BB M A ABRZL T TAREIREMER -
seoh o R T D EBGERHM QKD AA EEMB B EREZ I &N
FHOE—ESHSAAE MIEAEII AL CHRXNER - HPHA
A QKD 824 » AR CABRNYARHE M T > R SLAA AR
QKD AP IR R 4% -

AE R BB F ok £ BARAM [SPO0] ¥ [Koa09] B #H X ° &
0 B A A A [SPO0] AT 4% & 89 ik 0 4% BB84 th R ey R 2L 4
(reduce) £ #{ 4B REAFEMY & £ o 348 M 45 3% B A R €842 -
% BEA [Koa09] & ¥ 1E A 69435 » # A R #& € MR ¥ (uncertainty
principle) R 547 # 48 REAF IR K oy R 2 o BB T - KL HE
MR o % — 0 [SP00] & Fagies @i A A R ey T EE
Ml Rmes - ERmX T > KRAVFA & K% #HZ + indistinguishable
game T XEETE 5B BEME ABXFTRHEZTRERAL
ZEMEREY > BHBCOBRTHLIHBRLTREN I - F

d0i:10.6342/NTU201802067



= » Koashi #9388 [Ko0a09] & K i& 4 ¥ £ 14 J& 2 (post-processing) B4
WML EAE A B RFHEKN (one-time pad) huF o R LEIABPAE A
% R IR WA MARAE A B 0 BBR4 AR R A -

FEE T - BAMEH - BBR4

by

s :

vi

d0i:10.6342/NTU201802067



Abstract

Quantum key distribution (QKD) allows two parties to have a shared se-
cret key without relying on any computational assumption. While BB84 is
the oldest QKD protocol, it is easy to implement and compatible with decoy-

method, which makes it secure in the practical world.

In this thesis, we give a complete and self-contained security proof of
BB84 protocol. By complete, we mean that we give a comprehensive intro-
duction to all the building blocks of a security proof. We recall the formal
security definition of QKD, analyze all the necesary assumptions and give a
proof to show that BB84 attains the security definition. By self-contained, we
mean that we analyze the security of BB84 step-by-step without outsourcing
to other papers, except some mathematical facts whose proofs are not directly
related to the main context. We believe that our treatment makes it easier to
understand the security proof of QKD, especially for students and researchers

from different backgrounds.

Our work combines the proofs in [SP00] and [Koa09]. We reduce the se-
curity of BB84 to an entanglement-based protocol and describe the protocol
by error correction codes, which were introduced in [SP00]. Then, we ana-
lyze the security of the entanglement-based protocol by uncertainty principle,
which is the essential part of the proof in [Koa09]. Along the proof, we make
two improvements. First, in [SP00], the reduction is argued by the “equiv-
alence” between two protocols. We formulate the notion of equivalence by
an indistinguishable game, which fits the language of modern cryptography.

vii
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We apply the new definition of equivalence to the proof and analyze the pa-
rameter loss in the reduction. Second, the proof in [Koa09] requires that the
post-processing in the BB84 protocol must be encrypted by one-time pad.
We remove this requirement and show that BB84 remains secure if the post-

processing is done in public.

Keywords: Quantum Key Distribution, Security Proof, BB84
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Chapter 1

Introduction

1.1 Key Distribution

In many cryptographic applications, we need the involved parties to establish a shared
secret key in the beginning. For example, to send a confidential message over the internet,
we may encrypt it by AES-128. In order to do it, we need the sender and the receiver to
have 128 secret bits beforehand, so they run a key distribution protocol before AES-128.
However, Peter Shor [Sho94] showed that the discrete logarithm over natural numbers and
the factoring problem can be solved by a quantum computer in polynomial-time. Later
on, Proos and Zalka [PZ03] showed that the the discrete logarithms problem over elliptic
curves can also be solved by a quantum computer efficiently. Consequently, most of the
key distribution protocols we use nowadays, such as RSA, Diffie-Hellman key exchange,

ECDH, are vulnerable if large-scaled quantum computers are built.

Post-quantum cryptography is a research field studying classical' cryptographic al-
gorithms that resist the adversaries with quantum power. The development of quantum
computers motivates the National Institute of Standards and Technology (NIST) in the US
to start the standardization of post-quantum cryptography. The standardization includes
digital signature, public-key encryption, and key-establishment algorithms. The drafts

come all over the world and the submission deadline was on November 30, 2017. All the

'In this thesis, classical refers to not quantum.
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candidates will be examinated in 3 to 5 years before the final standard is chosen.?

1.2 Quantum Key Distribution

On the other side, the power of quantumness allows us to make a stronger cryptographic
primitive. Quantum key distribution (QKD) allows two parties to have a shared secret key
without relying on any computational assumption, which is also resistent to the quantum
adversaries.

The first QKD protocol was proposed by Bennett and Brassard [BB84], which is now
called “BB84 protocol.” The first implementation of BB84 was demonstrated by Bennett
et.al[BBB"92]. After BB84, various protocols were proposed [Ben92, BBM92] while
the security of them all rely on a perfect single photon source, which is not pragmatic for
implementation. To deal with this problem, the decoy-state protocol [Hwa03, LMCO05]
provides a way to monitor the disturbance of the adversaries under the assumption that
the source is a coherent state.

To have the security, all the protocols above still need an assumption that the sources
and the detectors work ideally. However, several attacks [ZFQT08, LWW™10] showed
that the detectors at the receiver side could be vulnerable. Measurement device indepen-
dent (MDI) QKD [LCQI12] allows two parties to have a secure key even all the detectors
are controlled by the adversaries. Can we go a further step by removing the assumption
about the sources? The answer is yes. Device independent (DI) QKD [MY98, VV14]
removes even the assumption about the source®.

Although DI-QKD still stays in theoretical works and has no implementation so far,
some protocols are becoming mature for applications. In the academic side, it was demon-
strated that the transmitting distance can be achieved at 404 km by MDI-QKD [YCY " 16].

Commercially, many companies * such as ID Quantique, MagiQ, QuintessenceLabs, Toshiba,

2The details and all the candidates can be found at the official website:
https://csre.nist.gov/Projects/Post-Quantum-Cryptography

3Comparing to MDI-QKD, DI-QKD needs extra assumptions that two parties are spatially isolated and
detectors do not leak the information.

“https://en.wikipedia.org/wiki/List_of companies_involved in_quantum_computing or
communication#cite note-46

d0i:10.6342/NTU201802067


https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://en.wikipedia.org/wiki/List_of_companies_involved_in_quantum_computing_or_communication#cite_note-46
https://en.wikipedia.org/wiki/List_of_companies_involved_in_quantum_computing_or_communication#cite_note-46

and so on, devote in the development of QKD by using decoy-BB84 or coherent one-way,
etc. CLAVIS3 made by ID Quantique achieves 3 kbit/s for 50 km [IDQ15] and Toshiba
claims that they have a prototype achieving 13.7 Mbit/s for 10 km°.

In addition, QKD networks, which allow distributing secret keys between financial,
military and government units, have been built in many countries, such as USA [ECP*05],
Vienna [PPAT09], Japan [SFI*11] and South Africa [MP10]. In 2016, the longest QKD
network, China Quantum Secure Backbone Project, is completed. It connects 32 trusted
nodes from Beijing to Shanghai and the total length of the fiber is up to 2000 kilometers.

Distance is the main issue of the fiber QKD. In 2016, China launched the first QKD
satellite, Micius. It successfully delivered entangled photons over 1200km [YCL*17]
and conducted a decoy QKD protocol with key rate 1.1 kbit/s [LCL™17]. There are many
QKD satellite projects are in preparation [BAL17].

To sum up, while quantum computers are still far from practical use, QKD has become
a feasible solution to key distribution. In the next section, we discuss another important

issue of QKD: the security proof.

1.3 Security Proof

What is the security proof? And why is it important? In Katz and Lindell’s book [KL14],

they give a vivid description of the age without security proofs.

Constructing good codes, or breaking existing ones, relied on creativity and
a developed sense of how codes work. There was little theory to rely on and,

for a long time, no working definition of what constitutes a good code. (page

1)

Schemes were designed in an ad hoc manner and evaluated based on their
perceived complexity or cleverness. A scheme would be analyzed to see if any
attacks could be found; if so, the scheme would be “patched” to thwart that

attack, and the process repeated. Although there may have been agreement

Shttps://www.toshiba.co.jp/about/press/2017_09/pr1501.htm

3

d0i:10.6342/NTU201802067


https://www.toshiba.co.jp/about/press/2017_09/pr1501.htm

that some schemes were not secure (as evidenced by an especially damaging
attack), there was no agreed-upon notion of what requirements a " secure”
scheme should satisfy, and no way to give evidence that any specific scheme

was secure. (page 16.)

Throughout history, many ciphers that are conceived to be safe are ultimately broken,
including the famous Nazi cipher, Enigma, in the world war two. It was not until 1980s
that the cryptographers finally pinned down the notion of a security proof.

A complete security proof consists of definitions, assumptions and mathematical proofs.
The formal definitions characterize what secure means and what a cryptographic primitive
should achieve. Then, most of the cryptographic primitives rely on some mathematical
hard problems or some environment factors. All the assumptions about these problems
or factors should be clarify. Finally, a rigorous mathematical proof gives an unbreakable
guarantee that no attack will succeed with respect to the given definitions and assumptions.

To formally define the security of QKD and to give a proof are not easy tasks. Al-
thogh the first QKD protocol was proposed in 1984 [BB84], it has no security proof until
Mayers gave one in 1996 [May96]. The precise security definition even came later. In the
early development of QKD, the security was defined in terms of the mutual information,
which does not guarantee the security against the general attack [KRBMO07].° The correct
definition, composable security, was proposed in [BOHL 105, RK05], which is stated in
terms of trace distance. Fortunately, the early proofs that give a tight bound on Fidelity
can be extended to the composable security easily.

To date, the security of BB84 protocol has been discussed by many papers from dif-
ferent aspects. As pointed out in [SBPC*09], there are three main techniques to prove the

security of QKD.

1. By uncertainty principle. The technique was proposed by Mayers in his first proof
[May96]. Later on, Mayers’ proof was simplfied by Koashi and Preskill [KP03,
Koa05]. Finally, the proof was extended to the composable security by Koashi

[Koa09].

®The detailed discussion is in Section 3.1.
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2. By entanglement distillation. Lo and Chau [LC99] proposed a new QKD proto-
col based entanglement distillation and showed its security. Then, Shor and Preskill
[SPOO0] showed that BB84 is secure if and only if the entanglement distillation proto-
col (EDP) is secure. This technique is so powerful that it is adopted in many proofs

for different protocols [GLLP04, LMCO05, LCQ12].

3. By entropic relations. Renner [Ren05] introduced the notion of smooth min-entropy
and max-entropy and gave a security proof for BB84 protocol by using entropic ar-
guement and quantum version of de Finetti’ s theorem. Tomamichel and Leverrier

[TL17] gave a self-contained review for this kind of technique.

1.4 Contributions

The main contribution of this thesis is that we give a complete and self-contained security
proof of BB84 protocol. By complete, we mean that we give a comprehensive introduction
to all the building blocks of a security proof. We recall the formal security definition of
QKD and some related properties in Section 3.1. We discuss all the necesary assumptions
in Section 3.3. In Chapter 4, we give a complete security proof to show that BB84 attains
the security definition.

By self-contained, we mean that we analyze the security of BB84 step-by-step without
outsourcing to other papers, except some mathematical facts whose proofs are not directly
relate to the main context. We only assume that the readers are familiar with basic quantum
information. We believe that our treatment can make it easier to understand the security
proof of QKD, especially for the students and the researchers from different backgrounds.

Along the proof, we make two little improvements. First, we formally define the no-
tion of “equivalence.” In [SP00], the reduction is argued by the equivalence between two
protocols. Koashi also used a similar argument in his proof [Koa09]. However, we notice
that the equivalence in the two papers are different. Shor and Preskill’s equivalence fits the

definition of security while Koashi’s equivalence only fits the definition of secrecy.” We

"The formal definitions of security and secrecy are given in Section 3.1.

5
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formulate the equivalence by an indistinguishable game, which fits the language of mod-
ern cryptography. We apply the new definition of equivalence into the proof and analyze
the parameter loss in the reduction.

Second, in most of the security proofs [SP00, GLLP04, Ren05], the post-processing®
can be done in public. However, Koashi’s proof [K0a09] requires that the post-processing
should be encrypted by one-time pad. It is costly since Alice and Bob must have a long
secret string beforehand. In Section 4.3, we adopt the argument in [K0a09] and show
that the technique based on uncertainty principle can also be applied to the case that the

post-processing is done without encryption.

1.5 Outline of the Thesis

In Chapter 2, we give a brief introduction to quantum information and linear correction
code, especially the properties we need. Some notation that will be used in this thesis is
presented in Section 2.1.

In Chapter 3, we formally introduce our security model. We start from the abstraction
of QKD. Then, we introduce the formal definition of the composable security. In Section
3.2, we formally define the notion of “equivalence” by an indistinguishable game. In
Section 3.3, we discuss the assumptions we need. The complete description of BB84
protocol is given in Section 3.4.

A complete security proof is given in Chapter 4. First, in Section 4.1, we reduce the
BB84 protocol to an entanglement-based protocol, which is easier to analyze. Then, the
correctness and the parameter estimation are analyzed in Section 4.2. Finally, a security
analysis based on the uncertainty principle (complementary argument), which is the es-
sential part of the proof, is given in Section 4.3. The security of BB84 is concluded in
Section 4.4.

In Chapter 5, we conclude the results we get in this thesis and discuss some prospective

works in the future.

8In this thesis, post-processing refers to parameter estimation, information reconciliation and privacy
amplification. These three steps will be introduced in Section 3.4.

6

d0i:10.6342/NTU201802067



Chapter 2

Preliminaries

2.1 Notation

Suppose s, s” are two binary strings. We denote the i-th bit of s by s[i]. We define wt(s)
to be the Hamming weight of s and d(s, s") to be the Hamming distance between s and s'.
We also define s @ s’ to be the bit-wise XOR of s and s'.

Suppose M is an m-by-n matrix and s € {0, 1}" is an n-bit string. Then we define
M s to an m-bit string such that s is treated as a column vector and M s is calculated by
matrix multiplication. We denote the i-th row of M by M |i].

Suppose p is a positive real number. We define [p] to be a set of positive integers by
[p] = {x € N: 2 < |p]}. The number of the elements in a set 7" is denoted by |T'|.

We define H; to be the binary Shannon entropy by
Hy(z) = —zlogz — (1 — z)log(1l — z).
We define 1 to be a function that indicates the truth value of a proposition p by

1, ifpis true;
1(p) =
0, ifpis false.

A function f from the natural numbers to the non-negative reals is called negligible if for

every positive polynomial p, there exists an integer N such that for all integers n > N, it

7
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holds that f(n) < }ﬁ. In this thesis, “the statement holds with high probability” means
“there exists a negligible function f(n) such that the statement holds with probability

1 — f(n), where n is the security parameter'.”

In this thesis, Alice and Bob refer to the two parties who want to establish a shared

secret key and Eve refers to an adversary of the QKD protocol.

2.2 Quantum States and Operations

A quantum register (or a quantum system) is a physical object that can store quantum
information. The content of a quantum register is called a quantum state. A quantum
state is modelled by a density operator, which is a positive semidefinite operator with unit
trace.

In this thesis, quantum registers are denoted by capital letters, such as A, B, F', and so
on. The quantum states of quantum registers are denoted by Greek letters with a subscript
to indicate the registers, such as p 4, o g, and so on. The Hilbert space of a quantum register
A is denoted by H 4. The Hilbert space H 45 of a joint quantum register AB is the tensor
product of the Hilbert spaces of each subsystems; that is, Hap = Ha ® Hp.

We write D(#H) to denote the set of density matrices acting on some Hilbert space .
Also, we define D () to be the set of subnormalzed density matrices acting on 7{; that

is, the set of positive semidefinite operators acting H with trace at most one.

We define the notation:

1

V2

1

+) (10) +11)) and |=) = 7

(10) = I1)).

The Pauli X gate, the Pauli Z gate and the Hadamard gate H are defined by

! Security parameter will be introduced in Section 3.1.

8
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Given a n-bit binary string s and an operator U, we define

U* = é Ut
2.3 Trace Distance and Fidelity

2.3.1 Trace Distance

The trace distance of two states p and o, denoted as ||p — o||,,., is defined by

lp=oll, = 3llp—ol
— 0 = — — 0
P tr 9 P 1

where || M||; = Tr ( MTM ) is the Schatten 1-norm of M. The trace distance is a metric.
That is, given a Hilbert space #, for all p, o, 7 € D(H), we have ||p — o||,, = |lo — pll,,;

|lp —o||,, = 0if and only if p = o; and the triangle inequality holds:
lp =7l <llp—oll, +llo =7l

Let {p;} and {o;} be two sets of density operators and >, p; = 1 where 0 < p; < 1 for

all 7. The trace distance is jointly convex,

Zpipi - Zpiai

< Zpi lpi — aill,, -
tr 7
2.3.2 Fidelity

The fidelity of two states p and o, F'(p, o), is defined as

Fp,0) = (Ilvpvalh)®. 2.1)

9
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If p is a pure state |1)) (1|, then the calculation of the fidelity can be simplified by

Filo) wl,0) = (0 VIO 0T o vI0) <w|>2
(Tev/ 1) @la ) 1)
(VI Te) wl))
Em)

~ (wlolw),

where the second and the third equation comes from +/|¢) (¢)| = |¢) (¢|. An operational
meaning of the fidelity can be seen from the calculation above. The term (¢|o|)) is

the probability of getting |¢)) as the result if we measure o by the POVM: {|¢) (¢|, I —
[v) (I}

An important property of the fidelity is given by Uhlmann’s theorem.

Lemma 2.1 (Uhlmann’s theorem). Suppose p and o are states of a quantum system Q).

Introduce a second quantum system R which is a copy of Q). Then,

o 2
F(p,0) —nﬁqu|<w|¢>| ,

where |1) is any fixed purification of p and the maximization is over all purifications of

g.

With Uhlmann’s theorem, we can prove a corollary which will be essential in our

security proof.

Corollary 2.2. Suppose p, is a reduced density operator of pap. Suppose pa and o,
have fidelity F (pa,04) > €. Then there exists osp with Trg (0cap) = 04 such that

F(paB,oaB) > €

Proof. Let |1) , 5, be a purification of p,p, which is also a purification of p4. Because

F (pa,o4) > €, by Uhlmann’s theorem, we can find a purification |¢) , 5 of 04 such that

2Some literatures define the fidelity by 1/F (-, -) such as the famous textbook [NC00]. But many QKD
security proofs [SP00, Koa09] adopt the definition as Equation (2.1). Here we follow the convention.

10

d0i:10.6342/NTU201802067



| (W|@) |*> > €. Let oap = Trg (|@) (¢]). Because tracing out a subsystem will not reduce

the fidelity, we have

F(pap,oap) > | (¥|o)|* > e

Finally, the relation between the trace distance and the fidelity is given by the following

lemma.

Lemma 2.3. Forall p,o € D(H), it holds that

1=V F(p,0) <llp=oal, <V1-Flpo)

2.4 Linear Code

Let F be a field. An [n, k| linear code C over F is a k-dimensional subspace of F”. In this
thesis, we only focus on [ = Z,. There are two common ways to represent a linear code:
generator matrices and parity check matrices. A generator matrix for an [n, k| linear code
C' is any n-by-k matrix G whose columns form a basis of C'. In general, there may be
many generator matrices for a linear code. The other way to represent a linear code is by
parity check matrices. A parity check matrix H for an [n, k] linear code C' is a full rank

(n — k)-by-n matrix such that for all z € C,

Hzx =0.

In other words, the null space of H is C'.

The dual code of C' is denoted by C-. The code C* consists of all the codewords ¢
such that c is orthogonal to all the codewords of C. Suppose C" is a linear code such that
C' C O+ and H' is a parity check matrix of C’. Then, it can be shown that the rows of H’

are orthogonal to the rows of H.

The existence of good codes is given by Gilbert-Varshamov bound: as n goes to in-
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finity, these exists an [n, k] code protecting against arbitrary ¢ errors such that

2t
> 1o (%),
n

In practice, if the positions of the errors are uniformly distributed, there exists a code with

3|

higher code rate protecting against ¢ errors in random positions with high probability.
However, in the cryptographic use, we cannot generally assume the errors are uniformly
distributed. Fortunately, the assumption holds if we apply a random permutation before
decoding. This can be done if we randomly choose a linear code from all the possible
codes. This property has been used in the proofs in [SP00, KP03]. For completeness, we

restate the proposition here.

Proposition 2.4. Suppose C,, . is the set of all [n, k| linear code over Zs. If we randomly
choose a code C from C,, 1, then for all € > 0, C can protect against t errors with proba-

bility 1 — 27" and the code rate of C satisfies

E:]_—]’IQ(£>—E
n n

Proof. The key idea comes from the random hashing [BDSW96]. Given an arbitrary n-bit
string z € {0, 1}" \ {0}, there are exactly 5 - 2" n-bit strings whose inner product with =
is zero. That is,

s € {0,1}" : 52 = 0(mod 2)}| = % Lo,

Thus, if we uniformly choose a string s from {0, 1}, then Pr(s - z = 0) = 1. In general,
suppose we have an (n—k)-by-n matrix M whose rows are uniformly chosen from {0, 1}".

Then, for all z, 2’ € {0, 1}" such that z — 2’ # 0, we have

where the probability is over the randomness of M.
Now, suppose we want to know whether z = 2’ for some z, 2’ € {0, 1}". We already

know that Mz = M2z’ and we want to check x = 2’ by one more parity bit check. If we
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uniformly choose a string s from {0, 1}" and compute s - x and s - 2/, then the probability
that we find they are different is only % conditioned on x # x’. However, if s is linearly
dependent of the rows of M, then s - x must equal to s - 2’. In this case, choosing s is

useless.

It is more clever that we only choose s from n-bit strings which are linearly indepen-
dent of the rows of M. In this case, we have a better chance to find s # s-2’ conditioned
on x # x'. That is the case we use a parity check matrix H of a random code C rather
than a randomly generated matrix M. Thus, for all z, 2" € {0, 1}" such that z # 2/, we

have
1 n—k
Pr(H(z—2') =0) < (5) : (2.2)
Suppose x is a codeword of C' and the corrupted codeword is y = x + e. Assume the
number of errors is at most ¢ so we have wt(e) < t. Let E be the set of all possible errors

and we have |E| < (7). The decoder first comoputes
r=Hy=Hx+ He = He.

If there is only one ¢ € E such that He’ = r, the decoder decides ¢’ as the error and
correct it. In this case, the error-correction is always successful. If there are two strings
e1,eo € E such that He; = Hey; = r, the decoder randomly chooses one of them.

However, the probability that such event happens is
|E]-1 1 n—~k
Pr(Hey = HeV Hey = HeV -V Heyp_y = He) < Y Pr(He; = He) < (|E|-1) (—) ,
i=1

where e1, es, -+ - , €jp—1 are all the elements of E'\ {e}. Choosingn—k =n (Hs (L) +¢),

n

the probability that error-correction fails is at most

-0 (3) = (3) (3) srmnni <o

where the second inequality comes from ( A"n) < 272(N) (Lemma 2.6). Because n — k =

13
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n (Hz (£) + €), we have the code rate

ﬁ:1—]¥2(£>—6
n n

2.5 Information Reconciliation

Now, let us consider a situation similar to the error correction. Suppose Alice has a se-
cret string s, and Bob has another secret string sp. Given that the Hamming distance
between two strings is small, could they agree on a same string without revealing too
much information about it? The answer is yes. A solution is doing error correction over a
public channel, which is known as information reconciliation. In this section, we realize
information reconciliation by a linear error correction code.

Let C,  be the set of all [n, k] linear code over Z,. Alice chooses a parameter m and
randomly chooses a linear code C' from C,, ,,—,,, where n = |s4|. Let H to be a parity
check matrix of C'. She computes the error syndrome » = Hs4 and announces H and r
in a public channel. Formally, we define IR.Enc(s4,m) to be an algorithm takes as input

a string s 4 and a parameter m as follow:

IR.Enc(sa, m)

Input: a string s4 and a parameter m

1. Randomly choose a linear code C' from Cg , | |5 ,|—m- Let H to be a parity check

matrix of H.
2. Compute the error syndrome r = Hs 4.

Output: a matrix H and the syndrome r

On the Bob’s side, we first define 7'(s, m) to be the set

T(s,m)={t € {0,1}" : d(s,t) <m}.

14
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With the error syndrome r, Bob tries to find a string s € T'(sp, m) such that Hs = r.
If there is only one s € T'(sp,m) satisfies Hs = r, he sets his reconciliated string as
s. If there are several strings s1, -+ , s, € T(sg,m) such that Hs; = --- = Hs, =,
Bob randomly chooses one of them as his reconciliated string. If Bob cannot find any
string s € T(sp,m) such that Hs = r, he just sets the string 0" as his reconciliated
string. Formally, we define IR.Dec(sg, H,7) to be an algorithm takes as input a string

sp, a matrix H and a syndrome r as follow:

IR.Dec(sp, H,T)

Input: a string sp, a matrix / and a syndrome r
1. Find a set of string S = {s € T'(sg,m) : Hs =r}.

2. If |S| = 1, choose the only element in S as reconciliated string. If |S| > 2,
randomly choose an element in S as reconciliated string. If |S| = 0, choose

0/*5l as reconciliated string.

Output: a reconciliated string s

If the Hamming distance between s 4 and sp is not too big, the probability that Alice

and Bob reach the same reconciliated string is given by the following proposition.

Proposition 2.5. Suppose s 4 and sg are two n-bit strings such that d(s4, sg) < én. Then,
Jor all € > 0, if we choose m = nHy(6) + ne and H,r are the outputs of IR.Enc(s 4, m),

we have s, = IR.Dec(sp, H, r) with probability 1 — 27",

Proof. Because d(sa, sp) < dn, s, mustlieinT'(sg, 0n). As we have shown in the proof
of Proposition 2.4, because H is the parity check matrix of a random code, the probability

that there exists another string s, € T'(sp, m) such that s, # s4 and Hs, = Hsqy = r is

Pr (H51 =HsaV Hsy=HssV -V HSi1(sp,5n)-1 = HSA)

|T(sp,0n)|—1

< Z Pr(Hs; = Hsa) < (|T(sp,on)| — 1) (%)m, (2.3)
i=1
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where s1, 52, -+, 5|7(s.0n)|—1 are all the elements of T'(s, 0n)\{s4 }. Because |T'(sp,dn)| =

( 5’;) < 2"120) (Lemma 2.6), Equation (2.3) can be bounded by

1 m
(I7(s5,0n)| = 1) <§> < @m0 mne = gone,

We have completed the proof. 0

2.6 Useful Mathematical Relations

Lemma 2.6. Forall N € N, X € [0, 1], it holds that

1 oNH(\) < N < gNH(O)
N +1 T \AN /) T

Proof. Because the logarithm is a strictly increasing function, it is sufficient to show that
N
—log(N + 1) + NH()A) < log ()\N) < NH(M).
By Stirling’s approximation log z! ~ zlogz — z + 1 log(2mz), we have

N
log (AN) = log N! —log(AN)! — log(N — AN)!
1 1
= NlogN — N + 3 log(27N) — AN log AN + AN — 5 log(2rAN)
1
— (N = AN) log(N = AN) + (N = AN) — S log(2(N — AN))

1 1
= Nlog N — ANlog AN — (N — AN)log(N — AN) + - log —————

< NlogN — ANlog AN — (N — AN)log(N — AN) 2.4)
= (N —=AN)logN — ANlogA — (N — AN)log N — (N — AN)log(1 — \)
= —NAlog\ — N(1 —A)log(l—\)

— NH()),

where Equation (2.4) comes from that % log TNNAN) ]\}

=V isnegative when N is large enough.
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On the other hand, because — log(N + 1) < 3 log 5

TN AN when N is large enough, we

have

1

N 1
1 = Nlog N — ANlog AN — (N — AN)log(N — AN) + - log =——————
> Nlog N — AN log AN — (N — AN)log(N — AN) — log(N + 1)

= —log(N +1)+ NH(M).

Thus, we have proved

N +1

Lemma 2.7 ([Ser74, Corollary 1.1]). Suppose we have a list of values x1,--- ,xn € R
which are not necessarily distinct. We draw a sample of size n without replacement and
denote these n sample results by a sequence of random variables X1, - - - , X,,. We assume
X1, -+ ,xy are not all the same so that max; x; — min; x; # 0. Let S,, = Z?Zl X; and

=~ Zfil x;. Then, for all t > 0, it holds that

VN

2 7
(N —n+1)(max; x; —min; ;) i

2t

Pr (S, —nu>nt) <e

Lemma 2.8 (Random Sampling Test). Suppose s, and s, are two N-bit binary strings. If
we randomly choose a subset S C {1,--- N} of size |S| = k. Let S® = {1,--- ,N}\ S
andn = N — k. Then, for all 0 < €,6 < 1, it holds that,

Pr( ) 1 (sifi) # sali]) < 0k A L (si[i] # safi]) > 5+ €)n < 2wt

€S ieSC

where the probability is over all the choices of S.

Proof. This proof mainly follows the proof of Lemma 6 in [TL17]. First, we consider the
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case s; = sy and we have

Pr (Z 1 (s1[i] # s2i]) > (6 + e)n) =0,

iesC

so the inequality holds trivially.

Now we deal with the case s; # so. Note that if an event A implies another event B,

then Pr(A) < Pr(B). Similarly, because the event

Zﬂ(sl[i] <5l€/\2]l s1i )>(0+e€n

i€S iest

implies the event

we have

i€S iest

< Pr (%Z L(silil # soli) +e < - 31 (sali] # smn) e

i€S iest

Pr(Z]l(sl[i] i) <OkAY 1(sifi z(5+e))

Let yu(s1,80) = & S 1 (s1i] # sa[i]). Then, we have

%Zuslwsm%( s1,52) = 3 L(sali] # sald] )

ies iesC
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Thus, the right hand side of the Equation (2.5) can be written as

Pr{ = 371 (s1fi) # sali) + € < - 31 (s1[i] # i)
- 5117 S9|1 € — S11? So |1
k’ — 1 2 =0 ~ 1 2

7 1€

=pr [ Nalsr,50) = S 1 (51l £ 92l) | +e< S u il # i)

iest iest

=Pr | Nu(s1,s2) + ke < HTH Z 1 (s1[1] # sald])

ic St
Pr| =3 L (51l # li) > p(on, 52) + @6
=Pr| — sili| # s — . .
o 1 2|t]) = BLS1, S2 N
iest
Now we paraphrase the random sampling test in terms of Lemma 2.7. Fort =1,--- | N,

let z; = 1 (s1[i] # s2[i]). Because we deal with the case s; # s2, we have max; z; —

min; 2; = 1. Because choosing the set S is equivalent to choosing its complement SC, we

let Xy, , X, bendraws from x, - - - , x5 according to the set SCoLet S, = Y iest Ti
and t = % Then, combining Equation (2.6) and Lemma 2.7, we have
n 2
o (lsn > pu(s1, 82) + ﬁ) = e2(5) w2 = 2 i
n N
O
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Chapter 3

QKD Model and Security

In this chapter, we formally introduce our security model and the proof in Chapter 4 will
follow this model. In Section 3.1, we introduce the security definition. In particular, the
composable security, the final security criterion we need, is defined in Section 3.1.2. Then,
in Section 3.1.3, we define two properties, correctness and secrecy, and we show that the
combination of the correctness and the secrecy implies the composable security.

In Section 3.2, we define the equivalence game, which will be useful in the security
proof. In Section 3.3, we discuss all the assumptions we need and the analysis in Chapter

4 will base on these assumptions. In Section 3.4, we formally describe BB84 protocol.

3.1 Security Definition

3.1.1 Abstraction

In order to define the security, we need to describe what QKD is formally. In this section,
we give an abstraction of QKD, including the input and output of the protocol and the
resources of the involved parties, without specifying any detailed steps of the protocol.
In this thesis, we only focus on “two-party key distribution.” We remark that there exist
some schemes that allow multi-parties to establish a shared secret key simultaneously, but
this is beyond the scope of this thesis.

A QKD protocol takes a security parameter n as input. The security parameter decides
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the key space K which is the set of binary strings that the protocol may generate. It also
decides other parameters that the protocol uses. Suppose Alice and Bob are the two parties
who want to establish a shared secret key |k) € K'. Alice and Bob are given a quantum
channel and a classical channel between them?.

The protocol could be accepted or rejected. In the case of acceptance, Alice gets a key
k4 € K and Bob gets a key kg € K. In the case of rejection, they always set their key
registers in a fixed state | L), where L is a pre-determined value not in the key space K.

Let K4 be Alice’s key register and K be Bob’s key register. We formally define
QKD as follow.

Definition 3.1 (Quantum key distribution). A quantum key distribution (QKD) protocol is
an interactive algorithm, run by two parties Alice and Bob®, that takes as input a security
parameter n and outputs akey k4 € LU {L}in Kyandakey kg € CU{L}in Kp. It

is required that if there is no attack, Alice’s and Bob’s key registers should be

1
WZ k) (K, @ 1R) (Kl (.1)

kek
with high probability. 1

Note that Equation (3.1) implies that when Alice and Bob accept the protocol and K 4

and K 5 have the same value with high probability, where k is uniformly distributed.

3.1.2 Composable Security

In the early development of QKD, the security was defined in terms of the mutual infor-
mation /(S; W) between the generated key S and the classical measurement outcome W
of the adversary’s system, where both S and W are classical random variables [LC99,

SP00, NC00, GLLP04]. However, the definition in terms of the mutual information does

'For consistency, we write the key as a quantum state |k). But note that the generated key is classical.

2Why do we consider classical and quantum channels separately given that the classical channels is just
a special case of quantum channels? The reason is that we could give the adversaries different power over
the different channels. Usually, we allow the adversaries to do any attack, such as intercepting or tampering,
over the quantum channel but allow the adversaries only to eavesdrop the classical channel.

3 Alice and Bob are just the nicknames of the two parties who want to have a shared secret key.
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not guarantee the security against the general attack. It asks the adversary to do the mea-
surement at the end of the QKD protocol, which makes the definition not “composable”
(the secret key remains secure when it is employed as a resource in other cryptographic
system). Konig et.al.showed that small mutual information does not guarantee the com-
posable security [KRBMO7].

The definition of composable security was proposed in [BOHL 105, RK05], which is
stated in terms of trace distance. Here we restate the definition by a thought experiment,
which is easier to interpret the operational meaning of the definition. The definition we
state is equivalent to the ones proposed in [BOHL 05, RK05].

We define some notation for the experiment. Let K4 and K5 be Alice’s and Bob’s
key registers respectively. Let C' be the register for all the classical information that Al-
ice and Bob send over the classical channel and let £ be the flag that indicates acception
or rejection. Let F be the quantum system of the adversaries. Recall that C is the key
space decided by the security parameter n. We define X+ = K U {L}. Let H¢ and
‘Hr be the Hilbert space of all the classical information and flag respectively. Note that
‘Hr is 2-dimensional. Let Hg be the Hilbert space of the quantum system of the adver-
saries. To sum up, the register K4 ® Kp ® F'® C' ® F represents a quantum state lies in

D(KT@Kt@Hr @ He @ HE).

QKD security experiment. In the experiment, there is a distinguisher D whose goal is
to guess which world he is in. In the real world, Alice and Bob run the QKD protocol
Q and try to get the key in their key registers K4 and Kz. The adversary A can both
control the quantum and classical channels. Let Syo0c01 b€ the set of all QKD protocols

and Sygversary b€ the set of all possible adversaries. Let

Real . Sprotocol X Sadversary — D (IC+ ® IC+ ® %F X HC ® 7'[E)

be a function whose output is the final state of the whole real world when the protocol QO
is run under the attack of A.

In the ideal world, Alice and Bob’s generated key registers are replaced with an ideal
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key. Specifically, the state in (4 ® K is replaced with ;5 35, i [k) (K|, @ [k) (K[,
if I' = |acc) (acc| and replaced with | L) (L[, @ [L) (L[, if F' = [rej) (rej|. Let

Ideal : Sprotocol X Sadversary — D (IC+ & }C+ ® HF & HC X HE)

be a function whose output is the final state of the whole ideal world when the protocol Q
is run under the attack of A.

In the end of the experiment, D will get the state Real(Q, .A) with probability 1 and
Ideal(Q, .A) with probability % The distinguisher D outputs a bit b = 0 if he guesses he

is in the real world or b = 1 if he guesses he is in the ideal world.

Definition 3.2 (secure QKD). A QKD protocol Q is called e-secure if for any adversary
A and for any distinguisher D, it holds that

|Pr(D(Real(Q,.A)) = 1) — Pr(D(Ideal(Q, A)) = 1)| <.

The trace distance has the operational meaning: if ||p — o||,,. = €, then the maximum
probability of distinguishing them is £ (1 + €). Thus, a QKD protocol Q is e-secure if and

only if for any adversary .4, we have
|Real(Q, A) — Ideal(Q, A)||,, <e.

Now we analyze the final states in the real world and the ideal world further. Suppose

Pr(ka, kp) is the probability that K4 = k4 and K = kg in the state Real(Q, .4). The

probability p,.. that Alice and Bob accept the protocol is pye. = Z,% kpek Pr(ka, kp)*

and the probability p,.; that they reject is pe; = 1 — paee. Let p(cl E) be the normalized
(kakp

state of C, E registers conditioned on rejection. Also let pip, ) be the normalized state

of C, F registers conditioned on K4 = k4 and K = kp. The states Real(Q,.4) and

#Note that the summation excludes k4, kg = L.
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Ideal(Q, .A) can be written as classical-quantum states:

Real(Q, A) = prej | L, LY (L, L]y, ® reg) (rej| @ pop

0 (Prlkaskp) lka, k) (as il g, @ lace) {acel o @ pEg") - (32)
ka,kpeK

and

1deal(Q, A) = prej |1, L) (L, L, i, ® |reg) (rej| © po

<‘ ’Z\kk (k, ke, i, © lace) <accyF> 7 Pr(kakp)pta. (3.3)

kek ka,kpeK

Suppose PKsKpFCE = Real(ga A) Let

acc (ka,k
p/l\(AKBFCE = Z Pr(ka, kg) <|kAa kp) (ka, kB‘KAK ® |ace) (ace|p ® ch B))
ka,kpelC

be the subnormalized state that Alice and Bob accept the protocol. By the convexity of

the trace distance, we have

[Real(Q, A) — Ideal(Q, A)l,,

. . 1 . . 1L
< Pres |1 L) (L Ly © Ires) (el @ b = 11 L) (L, Ll © Ired) (resl @ ol |

Aacc Aacc
+ Pace HPKAKBFCE XKaKp & pFCE”t,«

Aacc
= Pacc ||pKAKBFCE XKakp ® pFCEHtr )

Aacc

where piEs = Trc, i (P3R5, rop) a0d Xiaks = 57 Dpex 1K) (bl @ k) (k. That

is, because the states of the two worlds must be the same when rejection, we only need to

care about the state in the case of acceptance. Thus, we have the following corollary.

Corollary 3.3. Suppose Q is a QKD protocol and pr ,k,rcr = Real(Q, A). If for any

adversary A, the inequality

% ron — XKaky © p;\w‘gEHtr <e
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holds, then Q is e-secure.

3.1.3 Correctness and Secrecy

The goal of a key distribution protocol is to establish a “shared secret key.” As the goal
suggests, a secure QKD should satisfy two properties. First, it should establish a shared
key. That is, if Alice and Bob accept the protocol, their key registers should be the same

with high probability. In particular, we say a QKD protocol Q is €.o-correct if
Pr(Ka # Kp A F = |acc) (ace|) < écor

Second, it should establish a secret key. That is, from the perspective of Eve, the gener-
ated key should be very close to uniform distribution whenever Alice and Bob accept the

protocol. We say a QKD protocol Q is egc-secret if

Aacc Aacc
HPKAFCE — XK, ® pFCEHtT < €secs

where pi&iecp = Tre(piikyrop)s PPCE = Tkaks (0K K prop) a0d Xk, = Kl\ D exc |k) (kL4
Sometimes, it may be difficult to show the security of a QKD protocol. Portmann and
Renner [PR14] showed the security can be shown by considering the correctness and the

secrecy separately.

Proposition 3.4 ([PR14, Theorem 4.1]). Suppose a QKD protocol Q is € ,.~correct and

€sec-secret. Then, Q is (€qor + €oc)-SeCUTe.

Proof. We define an intermediate state 03" - Which equals to pj*¢% .o except that

the value in K'p is replaced with the value in K 4. That is,

acc ka,k
oSsearcr = D Pr(kaskp) (Jhaska) (b, Kal e, i, © lace) (ace] @ pl5s*))
ka,kpeK

SNote that PR%, pop 1S @ subnormalized state.
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By the triangle inequality, we have

Aacc Aacc Aacce Aacc /A\acc Aacc
HPKAKBFCE — XKaKp ® PF(JEH” < HPKAKBFCE - UKAKBFCE||”+HUKAKBFC’E I XKakp ® pFC’EHtT ;

(3.4)

where xx,x, = ﬁ > ek |k ) (K, k| i, - Direct calculation shows that

ka,k
kS ren = oiseprcall, < D Prlkasks)|| (1has ki) (has ksl i, © lace) (acel @ o))
ka,kgpe

- <|kA7 kA> <kAa kA|KAKB ® |(ICC> <CLCC| ® pgﬁng)) Ht

— Z Pr(ka, k) = Pr(Ka # Kp).
ka,kpEKNka#kpB

Because K is just a copy of K4 both in the states 0%, pop and Xx,x; ® PREE, We
have
Aacc Aacc o Aacc Aacc
||UKAKBFCE — XKaKp @ pFCEHtT = HTTB (UKAKBFCE) — Trp (XK, K5 @ pFCE)HtT

= ||PRS50r — xKa © PEER,, - (3.5

Because Q is € -correct and eg.-secret, we have Pr(K 4 # Kp) < € and

HP%aj%CE — XKa ©® vaacc'%Htr < €sec. Thus, we have HP??:CKBFCE — XKaKp © p?«“accﬁf“tr <

6(}01‘ + 6SCC' D

Some papers [TSSR11, HT12] adopts a slightly weaker notion of secrecy. In their

definition, a QKD protocol is €xc-secret if

: Aacc
min ||PKAFCE — XKa4 @ UFCEHtT < Esec:
OFCE

However, the follow lemma says that two definitions are equivalent up to a factor of 2.

Lemma 3.5 ([PR14, Appendix B]). Suppose we have a QKD protocol Q under the attack

of A. Let pr ,kpror = Real(Q, A). Then

: Nacc . . Nacc Nacc
Jfuin HpKAFCE — XK, ® UFCEH”, < €gec implies that HpKAFCE — XK, @ pFC’EHtr < 2€gec-
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Proof. Suppose 05 is the state achieves the minimum. Because tracing out only reduces

the trace distance, we have

HTTA (p}\?,:%CE) —Tra(xx, ® O-;CE)HW = ||P1A;gCE - O-}CEHtr < HP?{ZL:%CE T XK ® U}CEH” :

(3.6)
Because tracing out a subsystem which is a part of a product state would not change the

trace distance, we have

IXKs @ Ohce — Xia @ PECElw = l0Fkce — PFCElL = 10FcE — 0kcElly - B.7)

By Equation (3.6), Equation (3.7) and triangle inequality, we have

Hp/f\(a:%CE — XK, ® PIA%SEHW < HP??:%CE — XK, ® U}CEHW + Ixks ® 05 — XKa @ Prcslly

< 2| PS5 er — XKa © Oresll,,

: Aacc
=2 min ||piFcp — X, @ UFCE”tr'
OFCE

3.2 Equivalence Game

Sometimes, it may be difficult to analyze the security of a QKD protocol. Suppose we
can modify some steps in the original protocol so that Eve cannot notice the change from
her perspective. Then, the security of the original protocol reduce to the modified one
and it is sufficient to show that the modified protocol is secure. Intuitively, because any
difference of the security level can help Eve to distinguish two protocols, the protocols
should have the same security level if Eve cannot tell them apart. In such a case, we say
the two protocols are equivalent. In this section, we formulate the idea of equivalence
and explain why the security of the modified version implies the security of the original
version.

We define the notion of equivalence by a thought experiment. There are four players
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in this experiment, a challenger, a distinguisher D and two players (Alice and Bob) who
are going to run a QKD protocol. In the beginning, the challenger tells Alice and Bob
which QKD protocol they should run. The goal of D is to guess which protocol they run.
During the experiment, D can do anything over the quantum channel and learn all the
information over the classical channel. When the protocol ends, Alice and Bob send their
key registers K 4 and K to D. Finally, D guesses which protocol they run and we say D
wins if D guesses the right answer.

We make some remarks before introducing the formal definition. First, in this experi-
ment, D plays the role of adversaries. That means D can apply all kinds of attack allowed
in the QKD setting. Second, D gets more information than the ordinary adversaries be-
cause Alice and Bob will not annouce the key registers in the ordinary case.

We define the equivalence game between two QKD protocols Oy and Q;, denoted as

Equivy, o, (D), as follow.
1. The challenger uniformly chooses a random bit b € {0, 1}.

2. Alice and Bob run the protocol Q, where the distinguisher D controls both the quan-

tum and classical channels.
3. After the protocol ends, Alice and Bob send their key registers K4 and K to D.

4. D outputs his guess b'. Let Equivy, o, (D) = 1ifb = b" and Equivy, o, (D) = 0if
bA Y.

Definition 3.6. The two QKD protocols Qg and Q; are called equivalent if for any dis-

tinguisher D, it holds that

: 1
Pr (Equivg, o,(D) = 1) = 3

Next, we justify the reason why the game above is a good definition of equivalence.

A QKD protocol has two important metrics: the key rate and the security level. We are
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going to show that two equivalent protocols must have the same key rates and the same
security levels.

Because D has full control of the quantum channel, two protocols are equivalent only
if the quantum states transmitted in the channel are the same. The distinguisher D can also
get the final key register K 4, so he also knows the length of the generated key. Thus, the
generated key of two equivalent protocols must have the same length. The same transmit-
ted states and the same length of the keys implies that the key rates must be the same.

The following proposition implies that two equivalent protocols have the same security

levels.

Lemma 3.7. The two QKD protocols Qg and Q1 are equivalent if and only if for any A,

we have

|Real(Qo, A) — Real(Q4, A)||,, = 0.

Proof. We first show the forward direction. Suppose there exists an adversary A such that

|Real(Qp, A) — Real(Qy, A)|l,, =€ > 0.

Because the distinguisher D owns the key registers K4 and K in the end, D has the
full control of the final state. Thus, there exists a POVM such that D can distinguish
Real(Qy, A) and Real(Q;, A) with the probability 3 (1+¢), which leads to a contradiction.

We then show the backward direction. Suppose there exists a strategy of D such that
the winning probability of D is 5 (1 + €) where € > 0. Then, D always writes his guess-
ing in the register £ of the final state. Then, if we measure the register £/, we should
distinguish Real(Qy, A) and Real(Q;,.A) with probability 1 (1 + ¢), which contradicts to
|Real(Qo, A) — Real(Q4, A)||,. = 0. O

Corollary 3.8. Suppose two QKD protocols Qy and Q1 are equivalent. Then, Qy is e-

secure if and only if Q1 e-secure.

Proof. From Lemma 3.7, because Oy and Q; are equivalent, we have

|Real(Qo, A) — Real(Q1, A),, =0,
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which implies Real(Qp,.A) = Real(Q;, .A). Because the final state of in the ideal world
is fully depends on the final state in the real world, we have Ideal(Qy, A) = Ideal(Q;,.A).

Assume Q) is e-secure. Then for any adversary A, we have

[Real(Qn, A) — Ideal(Qy, A} < [Real(Qy, A) — Real(Qy, A, + [Real(@s;.A) ~ deal(Qn, A,
= [Real(Qy, A) — Ideal(Qo, A)ll,,
= ||Real(Qy, A) — Ideal(Q;, A)|,, <e.

On the other side, assume Q) is e-secure. Then for any adversary A, we have

|Real(Qy, A) — Ideal(Qy, A)||,, < ||Real(Qy, A) — Real(Qy, A)||,, + || Real(Qp, A) — Ideal(Qy, A)]|,,
— |[Real(Qo. A) — Ideal(Q,, A)]|,
= ||Real(Qy, A) — Ideal(Qy, A)|l,, < e.

Thus, Q is e-secure if and only if Q; e-secure. O

3.3 Assumptions

Assumptions play an important role in a security proof. If the implementation deviates
from the assumptions, Eve may learn extra information by applying the side-channel at-
tack. For example, if Alice does not have a perfect single qubit source, Eve can employ
photon number splitting attack [HIGM95, LJ02]. Or, detector blinding attack [LWW*10]
allows Eve to learn the whole secret key without being detected by partially controlling
the detectors. Thus, it is crucial to specify the conditions when the security holds. In this

section, we list all the assumptions we need.

1. Correctness and completeness of quantum mechanics. We assume quantum me-
chanics is correct. All the operations done by the involved parties should be de-
scribed by quantum mechanics and all the measurement results can be predicted

by quantum mechanics. Furthermore, we assume quantum mechanics is complete.
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That is, there does not exist other theory which is more informative than quantum
mechanics about the measurement results. This implies that Eve cannot get more

information than that quantum mechanics allows.°

2. Classical authenticated channel. We assume the classical channel between Alice
and Bob is authenticated. That is, Eve cannot tamper the information over the clas-
sical channel. In addition, Alice can make sure the messages over the channel comes
from Bob, and so is Bob. This assumption can be achieved by using information-
theoretically secure message authentication codes if Alice and Bob have a short

shared secret key beforehand.’

3. Isolated laboratory. We assume that Eve has no access to Alice’s and Bob’s
devices, That is, Eve cannot control or influence the devices and the devices do
not reveal any information to Eve. In reality, this assumption may be difficult to
achieve due to side-channel attack. However, measurement device independent

(MDI) QKD can remove the isolation assumption on the measurement devices.

4. Local randomness. We assume that Alice and Bob can access to an unbounded

uniformly random source.

5. Perfect detection. We assume that Alice’s and Bob’s detectors have no dark count
and loss. We also assume that all the measurements can be done exactly as the

protocol specifies.

6. Perfect source. We assume that Alice’s sources work exactly as the protocol spec-
ifies. In particular, we assume Alice can generate a perfect EPR pair or generate a

single qubit in a desired state.

Unless otherwise stated, all the security proofs in this thesis are analyzed under these

six assumptions.

®Note that the correctness and the completeness are different. The former does not imply the latter. Be-
cause quantum mechanics admits the indeterminism, only assuming quantum mechanics is correct does not
exclude the possibility that there exists some “hidden variables” that can help Eve to get more information.
The further discussion about the correctness and the completeness of quantum mechanics can be found in
[CR11].

"Due to this assumption, QKD is actually a “key expansion protocol” rather than key distribution protocol
if we want to achieve information-theoretic security.
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3.4 BB84 protocol

BB&84 protocol was introduced in Bennett and Brassard’s seminal paper in 1984 [BB84].
Later on, many papers [SP00, KP03, Ren05, Koa09, TL17] analyzed the security of BB84.
However, the description of BB84 protocols in these papers have slight difference. For
example, [KP03, Koa09] require that the error syndrome for information reconciliation
must be encrypted while [SP00, Ren05, TL17] does not require it. For clarity, we intro-
duce BB84 protocol in this section and the security proof will follows the description and
notation in this section.

BB84 protocol is composed of three stages: state preparation (SP), parameter esti-

mation (PE) and information reconciliation and privacy amplification (IP).

State Preparation Inthe SP stage, Alice uniformly sends one of the qubits |0) , |1) , |+) , |—)
at random. Since Bob does not know which state Alice sent, he measures the each re-
ceived qubit in the Z basis or X basis both with probability % Precisely, Alice uniformly
chooses a random string s, € {0, 1}4*™" for the bit values and another random string
ha € {0,1}4+M" for the bases that she encodes. Then, she sends (4 + 7)n qubits in the
state H"a X4 |0) @,

Bob also uniformly chooses a random string hp € {0, 1}*" for the bases that he
measures. The (4+7)-bit measurement result is denoted by s, where sp[i] = 0 represents
|0) or |+) and sp[i] = 1 represents |1) or |+). After Bob measuring all (4 4+ 7)n qubits, he
announces the fact. This step is crucial since parameter estimation should not start until

the SP stage is end.

Parameter Estimation The goal of PE stage is to estimate the disturbance of the po-
tential adversary. Conceptually, Alice and Bob randomly choose a subset of the qubits
and compare the results publicly. However, if Bob chooses a different basis that Alice
encodes, the measurement result will be uniformly random. In this case, the result is not
faithful and gives no information about the disturbance. Therefore, they only keep those

qubits that they encode and measure in the same bases. This step is known as sifting. To
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do it, Alice announces the bases h4. Then, Bob computes the indices that they use the

same bases; that is the set

To = {i € [(4+mn)n] : hali] = hp[il}.

To make the final key long enough, they abort the protocol if |Ty| < 2n. This is the reason
why Alice sends (4 4+ n)n qubits rather than 4n qubits. With these extra nn qubits, the
probability of |T| < 2n is negligible.

When the protocol is aborted, they set the flag register F in the state |rej) (rej| and
their key registers in the state | L) (_L|. The final outputis K4 = 1 and K = 1 and they
restart the protocol. Note that what do we mean by “Alice and Bob abort the protocol” is
“they abort this round of communication.” They abort the quantum and classical informa-
tion they have already shared and the local randomness they have generated. Then, they
restart from the beginning of the protocol.

If |Ty| > 2n, Bob randomly chooses a subset Ty C Tp such that |Ty| = 2n to
notify Alice which qubits are encoded in the same basis. They do the random sampling
test among these 2n qubits. Alice randomly chooses a subset Tipeek € Ty such that
|Teheck| = n. She announces Tepeck and s4fi| for all i € Typee. With this information,
Bob can calculate the number of the disagreement d,. Because the qubits belong to 7«
are encoded and measured in the same bases, there should not be any disagreement if the
channel has no disturbance. Consequently, d;, gives an estimation of the disturbance of

the channel.

Information Reconciliation and Privacy Amplification The goal of information rec-
onciliation is to make Alice and Bob to have a same string. To simplify the security proof,
we will realize the information reconciliation by a random linear code as we introduce in
Section 2.5. However, any other method that can achieve the goal with a security guaran-

tee can be applied in the QKD protocol.

Let Tyata = Tiiee \ Teneeck = {1, - - , tn} be the set of indices that are not used in the ran-
dom sampling test. We define s4 gaa = Salt1]|| - - - ||saltn] and sp gaa = sp[ta]||l - - - [|sB[tn]
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to be Alice’s and Bob’s raw keys before information reconciliation. Alice sets k4 jp =
54.data @S her reconciliated key.

Alice chooses a parameter mg. She runs the algorithm IR.Enc(ka ;g mir) and gets
a matrix Hr and the syndrome r. She announces Hjgr and r. With the matrix Hg and
the error syndrome 7, Bob sets his reconciliated key kp rr = IR.Dec(sp data, Hir, 7). In
Section 2.5, we know that kp ;r will equal to k4 ;r with high probability.

Because Eve may have some partial information about k4 ;r and kp rr, the goal of
privacy amplification is to reduce Eve’s information. To achieve the goal, Alice chooses
a parameter mpa and set g, = n — myr — mpa. Then, she randomly chooses a full rank
lgn-by-n matrix Hy, such that the rows of Hyg, are linearly independent to the rows of Hig.
She announces Hgy,.

Finally, Alice and Bob compute their own final keys k4 fin = Henka rr and kp fin =
Hiink g 1r respectively. The output of BB84 protocol is K4 = k4 fin and K = kg fin.

BB84 protocol is summarized as follow.

BB84 Protocol
Alice and Bob agree on a security parameter n.

State Preparation

SP1 Alice randomly generates two strings s4,hs € {0,1}#+”"  Bob randomly

generates a string hp € {0,134+,

SP2 Alice sends (4-+n)n qubits to Bob where the i-th qubit is in the state H"% X |0)

through the quantum channel.

SP3 When receiving the i-th qubit, Bob measures it in the Z basis if hp[i] = 0
and in the X basis if hg[i] = 1. Bob records the measurement results. Let

sp € {0,1}4+7" denote Bob’s measurement results.
SP4 After all the measurements, Bob announces the fact that he is done.

Parameter Estimation
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PE1 Alice announces h 4.

PE2 Bob calculates the set Ty = {i € [(4 + n)n| : hali] = hpli]}. If |To] < 2n,
they abort the protocol. Otherwise, Bob randomly chooses a subset Tz C T

such that |Ts| = 2n. Bob announces 7.

PE3 Alice randomly chooses a subset Teheck C Taie such that [Tipek| = n. She

announces 7 peck.
PE4 Alice announces s4[i| for all i € Tipeck-

PES Bob calculates the number d;, of the disagreement, s4[i] # sgli] for all i €
Teheek- Let € = %. If e, > Oy, they abort the protocol. Otherwise, the protocol

proceeds.
Information Reconciliation and Privacy Amplification
IP1 Suppose Tyaa = Tsire \ Teneck- Alice sets ka rr = S4 data as her reconciliated key.

IP2 Alice runs the algorithm IR.Enc(ka g, mir) and gets a matrix Hjg and the
syndrome 7. Let C'g to be the linear code corresponding to Hir. She announces

H and r.
IP3 With Hig and r, Bob computes his reconciliated key kp ;1 = IR.Dec(sp data, Hir, T')-

IP4 Alice randomly chooses a full rank /g,-by-n matrix Hg, such that the rows of

Hy, are linearly independent to the rows of Hg. She announces Hyg,.

IPS Alice and Bob compute their own final keys k4 fin = Hfnka rr and kpsn =

Hiinkp 1 respectively.

The final output of BB84 protocol is K4 = k4 fin and K = kg fin.
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Chapter 4

A Complete Proof of BB84

In this Chapter, we give a complete proof of BB84 by complementary argument. An im-
portant feature of this argument is that we argue the correctness and the secrecy separately.

In Section 4.1, we reduce the security of BB84 to an entanglement-based protocol
Hyb,, which will be easier to analyze. Then, we analyze parameter estimation in Section
4.2. Here, we get the correctness of Hyb, and a guarantee about the X measurement
outcomes, which plays a crucial role in the next section.

Section 4.3 is the core of the proof and we want to show the secrecy of Hyb;. In Section
4.3.1, we reduce the secrecy of Hyb, to a complementary protocol Com;. In Com;, Bob
measures his system in the X basis so that he will not get a valid key in the end. Thus,
the correctness does not hold in Com; and we only have the guarantee of secrecy. Then,
we reduce the secrecy of Com; to Coms which is easier to analyze. In Section 4.3.2, we
show the secrecy of Coms.

Finally, we get the composable security of BB84 by combining the correctness and the

secrecy in Section 4.4.

4.1 Reduction to A Virtual Protocol

In this section, we will introduce 5 hybrid protocols. The goal of this section is to reduce
the security of BB84 to an entanglement-based protocol Hyb,. To paraphrase, if we can

show that Hyb; is e-secure, then BB84 is also e-secure due to the reduction.
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Hybrid Protocol 1: Alice prepares the state by EPR pairs. In BB84, Alice generates
sa,ha € {0,1}3+77 first and sends qubits in {|0),[1),[+),|—)} according to s4 and
ha. InHyb,, Alice generates h4 € {0, 1}*+M" and (4+7)n EPR pairs |®*) = 5(100) +
|11)). She applies the Hadamard gates to the second qubits of the EPR pairs according to
h 4. Then, she measures the EPR pairs in the Z basis and gets the measurement outcome

SA.

Hybrid Protocol 1 (Hyb,)

State Preparation

SP1 Alice randomly generates an (4 + n)n-bit strings h4 € {0,1}#+M" Bob also

randomly generates an (4 + 7)n-bit string hp € {0, 1}4+7n,

. 4 n
SP2 Alice prepares the state |®+)*“™" where [@+) = \%(|00> + |11)). She
applies the Hadamard gates to the second qubits of the EPR pairs according

to h, that is, (I @ H)ha [@+)2Emm,

SP3 Foralli € {1,---,(4 + n)n}, Alice measures the first qubit of the i-th EPR
pair in the Z basis and sends the second qubit of each EPR pair to Bob. Let

s4 € {0,1}4+M" be the measurement outcomes.

SP4 After receiving (4 +1)n qubits, Bob applies the Hadamard gates to these qubits
according to hp. Then, he measures all the (4 + 1)n qubits in the Z basis and

let sp € {0, 1}#+7" be the measurement outcomes.
SP5 After all measurements, Bob announces the fact that he is done.

Parameter Estimation

PE1 to PES5 are the same as BB&4.

Information Reconciliation and Privacy Amplification

IP1 to IP5 are the same as BB&4.

Lemma 4.1. BBS84 and Hyb, are equivalent.
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Proof. First note that applying a Hadamard gate before a Z measurement is the same as

directly doing a X measurement. Expressing by quantum circuit notation, that is

7 - i

If we measure the EPR pair in the Z basis, the result will be Z = 1 with probability % and
Z = —1 with probability % The same also goes for X basis. Thus, the distribution of the
binary string s4 in Hyb, is the same as s, in BB84.

In Hyb,, for all i € {1,---,(4 + n)n}, the post-measurement state of the second
qubit of the i-th EPR pair is A" X |0). Thus, what state that Alice sends through the
quantum channel at SP3 in Hyb, is exactly the same as BB84. Because Alice actually
prepares the same states in both protocols and all the other steps are the same, the two

protocols are equivalent. O]

Hybrid Protocol 2: Alice defers her measurement. In Hyb,, Alice measures the EPR
pair before sending the second qubit of each pair to Bob. In Hyb,, Alice defers the mea-

surement after Bob received them.

Hybrid Protocol 2 (Hyb,)

State Preparation
* SP1 and SP2 are the same as Hyb,.

SP3 Alice does not measure EPR pairs. Instead, she directly sends the second qubit

of each EPR pair to Bob.

SP4 After receiving (4 +1)n qubits, Bob applies the Hadamard gates to these qubits
according to hp. Then, he measures all the (4 + 1)n qubits in the Z basis and

let s € {0, 1}#+7" be the measurement outcomes.
SP5 After the measurements, Bob announces the fact that he is done.

SP6 Alice measures all her remaining system in the Z basis. Let s, € {0, 1}(4+m7
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be the measurement outcomes.

Parameter Estimation

PE1 to PES are the same as Hyb;,.

Information Reconciliation and Privacy Amplification

IP1 to IP5 are the same as Hyb;,.

Lemma 4.2. Hyb, and Hyb, are equivalent.

Proof. Because Eve has no access to Alice’s system, Alice’s measurement operator com-
mutes with Eve’s unitary operators or measurement operators. Thus, in the equivalence
game, the distinguisher D cannot tell apart the timing that Alice measures the first qubits

of EPR pairs. Therefore, the two protocols are equivalent. [

Hybrid Protocol 3: Alice announces the bases her used. Alice and Bob now are shar-
ing the EPR pairs. Because Bob can store the received qubits in his quantum memory
and measure them after Alice announces her bases, he does not have to “guess” the bases.
Thus, in the new protocol, Hyb;, Bob does not apply Hadamard gates and measure the
qubits in the SP stage. Instead, he chooses his bases hp such that hg = h,4 after Alice
announces h 4. Then he measures the received qubits.

In this case, |Ty| is always (4 4+ 1)n so Bob does not have to calculate it. Also, Hyb,

is impossible to be aborted due to |Tp| at PE1 and PE2. Hyb, is summarized as follow.

Hybrid Protocol 3 (Hyb,)

State Preparation

SP1 Alice randomly generates an (4 + 1)n-bit strings h4 € {0, 1}*""_ Bob does

not generate h g now.

>®(4+77)n

SP2 Alice prepare the state |O . She applies the Hadamard gates to the

second qubits of the EPR pairs according to h 4; that is, (I @ H)h4 |<D+)®(4+”)”.

SP3 Alice directly sends the second qubit of each EPR pair to Bob.
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SP4 After receiving (4 + n)n qubits, Bob announces the fact that he receives the

qubits. He does not apply Hadamard gates or measure the qubits now.

SP5 Alice measures all her remaining system in the Z basis. Let s, € {0, 1}“+m»

be the measurement outcomes.
Parameter Estimation
PE1 Alice announces h 4.

PE2 Bob sets hg = h, and applies the Hadamard gates to the receiving qubits
according to hp. Then, he measures all the (4 + 1)n qubits in the Z basis and

let s € {0, 1}#+7" be the measurement outcomes.

PE3 Bob randomly chooses a subset Ty C [(4 + n)n| with |T4s| = 2n. Bob an-

nounces 1.

PE4 Alice randomly chooses a subset Tipeck C Tyire With | Tepeck| = 1. She announces

Tcheck .

PES Alice announces s4[i| for all i € Tipeck-

PE6 Bob calculates the number d, of the disagreement, s4[i] # sg[i] for all i €
Teheck- Let ey = %. If e, > 0, they abort the protocol. Otherwise, the protocol

proceeds.

Information Reconciliation and Privacy Amplification

IP1 to IP5 are the same as Hyb,.

Before proving the relation between Hyb, and Hyb,, we prove a revelant claim.

Claim 4.3. The probability that |Ty| < 2n in Hyb, is 2-00"),
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Proof. The probability that | Ty| < 2n is

() () () e

=0
< op . g~ Gmnt(nnt (F5) (4.2)
< on . g~ Gnn(sd)” (4.3)
< 2n- () (4.4)
<. 2*"(% (4.5)
< 2_”@)“"‘%2” (4.6)
e 270(), (4.7)

where Equation (4.2) comes from (") < 2e#t/%) forall a € (0,1],b € [0,1] such that
a > b; Equation (4.3) comes from H(z) < 1 — 2(z — 3)? for z € [0, 1]; Equation (4.5)

comes from n € [0, 1]. O
Lemma 4.4. If Hyb, is e-secure, then Hyb, is (€ + 2 - 2700"))_secure.

Proof. Let’s consider the equivalence game Equivyy, iy, (D). Hyb, behaves exactly
the same as Hyb, if |To| > 2n in Hyb,. The only case that the distinguisher D has the
advantage to tell Hyb, apart from Hyb; is when he sees the protocol aborted at PE2. Thus,

for any distinguisher D we have
Pr (Equivyy,, gy, (D) = 1) < Pr (Hyb, is aborted at PE2) . (4.8)
Because Hyb, is aborted at PE2 only if |7;| < 2n, Equation (4.8) becomes

Pr (Equivyyyy, g1y, (D) = 1) < (1 n 2*00”72)) . (4.9)

DO | —

Because the distinguisher D owns the key registers K 4 and K in the end of Equivyyy, yyp,, (D),
D has the full control of the final state. Thus, for some ¢ > 0if | Real(Hyb,, .A) — Real(Hyb,, .A)

||t7“ =

¢, there exists a POVM such that D can distinguish Real(Hyb,, .4) and Real(Hyb,, .A)
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with the probability $(1 + €). However, Equation (4.9) gives an upperbound to . Conse-

quently, we have
|Real(Hyb,, A) — Real(Hybs, A)]|,, < 9—O(nn?)_

Given two quantum states p, o, tracing out the same subsystems only reduce the trace
distance. Also, if we append the same state to p and o (for example: Y ® p and x ® o),
the trace distance remains the same. That is what we do in the ideal world. Thus, if we

consider the states of Hyb, and Hyb, in the ideal world, we have
[Tdeal(Hyb,, A) — Ideal(Hyb,, A)||,. < |[Real(Hyb,, A) — Real(Hyb,, A)||,, < 27°¢7).

By assumption, Hybs is e-secure, so ||[Real(Hybs, A) — Ideal(Hybg, A)||,. < e. Finally,

we combine all the results by triangle inequality and we get

HReal(Hbe, A) - Ideal(Hyb27 A) Htr < HReal(Hyb27 "4) - Real(Hyb37 A) ”tr
+ ||Real(Hyb;, A) — Ideal(Hybs, A)||,.
+ |[Ideal(Hyb,, A) — Ideal(Hyb,, A)|l,,

< 970M) ¢ 4 9= O),

Hybrid Protocol 4: Alice only sends 2n EPR pairs. In Hyb,, Alice sends (4 + n)n
qubits to Bob and Bob has to choose a subset T;s. In Hyb,, Alice only sends 2n qubits to

Bob. Thus, in this case, Bob does not have to choose the set 7.

Hybrid Protocol 4 (Hyb,)

State Preparation
SP1 Alice randomly generates an 2n-bit strings h4 € {0, 1}*".

SP2 Alice prepare the state |®+)“*". She applies the Hadamard gates to the second
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qubits of the EPR pairs according to . 4; that is, (I @ H)M |®+)%%",
SP3 Alice directly sends the second qubit of each EPR pair to Bob.
SP4 After receiving 2n qubits, Bob announces the fact that he receives the qubits.

SP5 Alice measures all her remaining system in the Z basis. Let s4 € {0,1}*" be

the measurement outcomes.
Parameter Estimation
PE1 Alice announces h 4.

PE2 Bob sets hy = h, and applies the Hadamard gates to the receiving qubits
according to hg. Then, he measures all 2n qubits in the Z basis and let sg €

{0, 1}*" be the measurement outcomes.

PE3 Alice randomly chooses a subset Tipeck C [27] such that |Tipeck| = n. She

announces 7 peck.
PE4 Alice announces s4[i| for all i € Tipeck-

PES Bob calculates the number d, of the disagreement, s4[i] # sg|i] for all i €
Teneck- Let e, = %. If e, > 0, they abort the protocol. Otherwise, the protocol

proceeds.

Information Reconciliation and Privacy Amplification

IP1 to IP5 are the same as Hyb,.

Lemma 4.5. [f Hyb, is e-secure, then Hyb, is also e-secure.

Proof. Consider a virtual protocol Vir that is the same as Hyb, except that Bob chooses
and announces the subset T C [(4+7)n] at the beginning. Because this change gives the
adversary more power, so it would only make the security worse. Thus, if Vir is e-secure,
then Hyb, is also e-secure.

Suppose A is an adversary attacks on Vir and .4’ is an adversary attacks on Hyb,. Next,

we are going to show that as long as A achieves ||Real(Vir, A) — Ideal(Vir, A)||,, = €,
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A’ can also achieves ||Real(Hyb,, A’) — Ideal(Hyb,, A")||,, = €. Hence, the security
level of Vir is better than Hyb,.

When receiving the 2n qubits in Hyb,, A" prepares (2 + 1)n EPR pairs and fills them
into the 2n qubits that Alice sent according to Ty. Then, A’ applies the same attack as A
does in the virtual protocol. Finally, A’ only sends those qubits in 7§ to Bob so Bob will
only receive 2n qubits. Note that Alice and Bob never use those qubits not in 7, so it does
not matter A" or Bob discard those qubits not in Ty That is, A’ can perfectly reproduce

A’s attack. Thus, if the Hyb, is e-secure, then the virtual protocol is also e-secure. [

Hybrid Protocol 5: Alice and Bob defer the measurement on data until IR. In Hyb,,
Alice and Bob measure all the 2n qubits in the PE stage. Thus, the input of the IP stage
is two classical strings. In Hyb;, they only measure those qubits in Tipeq during the PE
stage. Those qubits in Ty,, remain in the quantum state after the PE stage. Let A and B

denote the Alice’s and Bob’s quantum registers for the qubits in Ty, respectively.'

Hybrid Protocol 5 (Hyb:)
State Preparation

SP1 to SP4 are the same as Hyb,. Alice does not do SP5.

Parameter Estimation
PE1 Alice announces 5 4.

PE2 Bob sets hy = h, and applies the Hadamard gates to the receiving qubits

according to hp. He does not measure them now.

PE3 Alice randomly chooses a subset Tipeck C [27] such that |Tipeck| = n. She

announces 7 peck.

PE4 For all ¢ € T ek, both Alice and Bob measure the i-th qubit of their systems

in the Z basis. Let 54 check and 55 check be the n-bit measurement outcomes of

"Note that K 4 and K are the key registers for the final key, which are different from A and B.
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Alice and Bob respectively. Alice announces s 4 check-

PE5 Bob calculates the number dj, of the disagreement, s 4 check[!] 7 SB check[?] for all
i € [n]. Lete, = %. If e, > 6, they abort the protocol. Otherwise, the protocol

proceeds.
Information Reconciliation and Privacy Amplification

IP1 Letregister A and register B be two n-qubit quantum states of Alice’s and Bob’s
systems which are not used for parameter estimation. Alice and Bob measure A
and B in the Z basis and get n-bit strings s 4 4aa and sp gata r€Spectively. Alice

sets her reconciliated key k4 rr = 54 data-

 IP2 to IP5 are the same as Hyb,.

Lemma 4.6. Hyb, and Hyb, are equivalent.

Proof. Note that in the Hyb,, Alice announces s 4[i] for i € Tipeck after Tepeck is announced.
Also, Bob compares s check[?] 7# S5 check[t] fOr @ € Topeek after Topeek 18 announced. Thus,

the protocol works the same if the measurement is defered until 7} is announced.

Because the distinguisher D has no access to Alice’s and Bob’s devices, D can not
distinguish the order of the measurement and the choosing of Tiyek. Similarly, Alice
and Bob do not use those qubits 7j,, before the IP stage, so the measurement can be
defered to the beginning of the IP stage without noticing by D. Thus, two protocols are

equivalent. [

Combining Lemma 4.1,4.2,4.4,4.5,4.6, we can conclude the relation between BB84

and Hyb.

Corollary 4.7. If Hyb, is e-secure, then BB84 is (e + 2 - 2-°0""))_secure.
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4.2 Parameter Estimation

4.2.1 Correctness

In this section, we are going to show that Alice and Bob can agree on a same final key
in the end of Hyb,. First, we analyze the measurement outcomes at the beginning of

information reconciliation.

Lemma 4.8. Suppose Alice and Bob run Hybs. Let k z and kp 4 be Alice’s and Bob's

measurement outcomes at IP1 respectively. Then,

Pr <PEpasses A Z 1 (kasiplt] # kpsiplt]) > (0m + epE)n> < e e, (4.10)

=1

where the probability is over the quantum randomness of Alice and Bob's system and the

choice of T peck-

Proof. The key observation is that the choice of T, is independent to the measurements
on Alice’s and Bob’s key registers. Thus, the measurement can be conducted at the be-
ginning of the PE stage (which is exactly Hyb,) without changing the statistics and the
post-measurement state of the measurement.

However, if Alice and Bob do the measurement at the beginning of the PE stage, the
choice of Tipeck 1 just the random sampling test whose result is guaranteed by Lemma 2.8.

Thus, conditioned on the PE stage passes, we have

. n-n?
Pr (PE passes A > 1 (kagnli] # kpnlil) > (5 + epE)n> < ¢ MFeminy < e e

i=1
[

Remark 4.9. Note that the right-hand side of Equation (4.10) is independent of d,. That is,
as long as 0y, € [0, 1], the value of oy, does not imfluence the probability bound. However,
the value of oy, will imfluence the probability that Alice and Bob abort the protocol. If
is too small, the protocol is likely to be aborted and Alice and Bob cannot establish the

key. If &y, 1s too big, information reconciliation needs to tolerate many errors and the key
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rate becomes low. Thus, in practical use, it is important to choose a proper threshold dy,.

Now we show the correctness of Hyb;.

Lemma 4.10. [fwe choose m;z = nHy (84, + €pg) + negg, then Hyby is (277" + e‘”efQ’E)—

correct.

Proof. From Proposition 2.5, we know that if the errors are less than (dy, + €pg ) n, informa-
tion reconciliation will succeed except the probability 27"“®. On the other hand, if Alice
and Bob abort the protocol, their key registers will always be L. Thus, the only possibility
that K4 # K is that they accept the protocol but information reconciliation fails. From
Lemma 4.8, the probability that they accept but the number of errors exceeds (O, + €pg)n

. .2 .
is at most e~ "’e, Thus, by union bound, we have

Pr(K4# Kp A F =ace) {acc|) < 27"R 4 ¢~

4.2.2 Guarantee of X measurement

In this section, we want to analyze the case that Alice and Bob measure their systems in
the X basis at the beginning of the IP stage. As what we did in the previous section, we

want to reduce the analysis into a classical probability case.

Alternative Protocol 1 (Alt;)
(Alice and Bob apply the Hadamard gates later)

State Preparation
SP1 Alice randomly generates an 2n-bit strings h4 € {0, 1}*".
SP2 Alice prepare the state |®1)“*". She does not apply the Hadamard gates now.
SP3 Alice directly sends the second qubit of each EPR pair to Bob.

SP4 After receiving 2n qubits, Bob announces the fact that he receives the qubits.
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Parameter Estimation
PE1 Alice announces h 4.

PE2 Bobsets hg = ha. He does not apply the Hadamard gates and does not measure

them now.

PE3 Alice randomly chooses a subset Tipeck C [27] such that [Tipeck| = n. She

announces 7 geck.

PE4 For all i € Tk, both Alice and Bob apply a Hadamard gate to the i-th qubit

of their systems if h4[i] = 1 and do nothing if h4[i] = 0.

PES Forall 7 € Ty,m, both Alice and Bob apply a Hadamard gate to the ¢-th qubit of

their systems if 2 4[i] = 1 and do nothing if h 4[] = 0.

PE6 For all ¢ € Tipeck, both Alice and Bob measure the i-th qubit of their systems
in the Z basis. Let 54 check and Sp check be the n-bit measurement outcomes of

Alice and Bob, respectively. Alice announces s check-

PE7 Bob counts the number d, of i € [n] such that s check[t] # SB.check[?]. Let

e, = %. If e, > 0w, they abort the protocol. Otherwise, the protocol proceeds.

Information Reconciliation and Privacy Amplification

IP1 to IP5 are the same as Hybs.

Lemma 4.11. Suppose Alice and Bob run Alt,. Let k4 g, and kp g5 be Alice’s and Bob's

measurement outcomes in the Z basis at IP1, respectively. Then,
Pr <PEpasses A Z 1 (kagnli] # kpnli]) > (6m + 6PE)TL> < e—ne;E7
i=1

where the probability is over the quantum randomness of Alice and Bob's system and the

choice of T peck-

Proof. There are two differences between Hyb, and Alt,. First, Alice applies the Hadamard

gates to the first qubits of the EPR pairs in Alt; while she applies to the second qubits in
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Hyb;. Second, the timing of applying the Hadamard gates are different. Alice and Bob de-

fer it until Alice announces Tpee in Alt;. We are going to show that these two differences

do not change the guarantee of the PE stage.

First, a direct calculation shows that

(HeD)|®") = -

A

N

1 0 O
-1 0 O
0 1 1
0 1 -1

— (IQH)|®T) .

4.11)

Equation (4.11) implies that if Alice applies the Hadamard gates to the first qubits of the

EPR pairs, namely (H ® 1) |®+)®*", she actually generates the same state of SP2 in

Hybs;.

Second, because the adversary has no access to Alice’s system, the operation (H ®

1) |®+)®*" can defer until the end of the SP stage. Also, in Alty, PE4 and PE5 actually

ask Alice and Bob apply H"4 for all i € [2n]. Thus, applying the Hadamard gates is

independent to T¢peck. Therefore, the argument of Lemma 4.8 applies.

]

State Preparation

Parameter Estimation

SP1 to SP4 are the same as Alt;.

* PE1 to PE3 are the same as Alt;.
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Alternative Protocol 2 (Alty)

their systems if h4[i| = 0 and do nothing if h4[i] = 1.

(Alice and Bob flip the Hadamard basis for 7j,,)

PE4 For all @ € Tk, both Alice and Bob apply a Hadamard gate to the i-th qubit

of their systems if 4 4[i] = 1 and do nothing if h 4[] = 0.

PES For all ¢ € T}y, both Alice and Bob apply a Hadamard gate to the ¢-th qubit of
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* PE6 and PE7 are the same as Alt;.

Information Reconciliation and Privacy Amplification

IP1 to IP5 are the same as Alt;.

Lemma 4.12. Suppose Alice and Bob run Alts. Let k4 4 and kp gz be Alice’s and Bob's

measurement outcomes in the Z basis at IP1 respectively. Then,

Pr <PEpasses A Z 1 (kasinli] # kpsipli]) > (6m + 6PE)7L> < e

=1

where the probability is over the quantum randomness of Alice and Bob's system, the

choice of T jecr and the choice of h 4.

Proof. Given a set Tepeex C [2n], we define fr : {0,1}** — {0,1}*" by

fT(x>[Z] - hA[Z]a ifi € Tcheck;
fr(x)[i] =1 = hali], ifi ¢ Tineck-

Suppose Alice chooses hy4 in Alt; and chooses A/, in Alts. Then, Alt; will be executed
exactly the same as Alto, if by = fr(ha). Because fr is bijective, for any hy € {0,1}*",
there exists one and only one 7/, satisfies h'y = fr(ha).

Note that Lemma 4.11 holds for any hy € {0,1}*" and h, is chosen uniformly at

random. Thus, we have this lemma. ]

However, for those i € Ty, applying H' "4l followed by a Z measurement is ex-
actly the same as applying H"4l! followed by a X measurement. Thus, we have the

following corollary.

Corollary 4.13. Suppose Alice and Bob run Hyb. If Alice and Bob measure register A
and register B in the X basis with the measurement outcomes | and pp respectively,

then

Pr (PEpasseS A Z 1 (pali] # psli)) > (64 + EPE)N> < e,

i=1
where the probability is over the quantum randomness of Alice and Bob's system, the

choice of T .jecr and the choice of h 4.
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4.3 Complementary Argument

4.3.1 More Hybrid Argument

In this section, we will introduce 5 hybrid protocols. The goal of this section is to reduce
the secrecy of Hyb, to an complementary protocol Coms. To paraphrase, if we can show
that Comyj is e-secret, then Hyb; is also e-secret due to the reduction.

Note that the hybrid argument starts from Hyb, and an complementary protocol Com;,
instead of Alt; or Alt,. Also note that, the reduction in this section only cares about the

secrecy instead of the security, because Bob does not generate a valid key here.

Complementary Protocol 1: Bob measures his system in the X basis so he does not
yield a valid key. There are two difference between Hyb, and Com,. First, Bob mea-
sures register B in the X basis in Com; while he uses Z basis in Hyb,. Bob’s measurement
outcome in Com; is denoted by . Second, Bob does not yield a reconciliated key so he

just outputs 0% in the final key register.

Complementary Protocol 1 (Com,)
State Preparation

SP1 to SP4 are the same as Hyb,.

Parameter Estimation

PE1 to PES are the same as Hyb;.

Information Reconciliation and Privacy Amplification

IP1 Alice measures register A in the Z basis and Bob measures register B in the X
basis. Let 54 4ata be Alice’s measurement outcome and y« be Bob’s measurement

outcome. Alice sets her reconciliated key k4 1r = 54 data-

IP2 Alice runs the algorithm IR.Enc(ka g, mir) and gets a matrix Hg and the

syndrome 7. Let C'g to be the linear code corresponding to Hir. She announces
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H]R and r.

IP3 Alice randomly chooses a full rank /g,-by-n matrix Hg, such that the rows of

Hy, are linearly independent to the rows of Hg. She announces Hg,.

IP4 Alice computes her own final keys k4 5 = Hunka rr. Bob sets his key register

as (fn,

The final output of Com, is K4 = k4, and Kp = 0.

Lemma 4.14. If Com, is e-secret, then Hyb; is also e-secret.

Proof. Let pi,kprce = Real (Hybs, A) and 7k, k,rcr = Real (Comy, .A) for some
adversary A. Note that the SP and PE stages of Hyb, and Com; are the same, so the

probabilities that they accept the protocols should be same.

All Alice’s operations in the IP stage are independent to Bob’s system. Thus, the distri-
bution of error syndrome 7, Vpa and the final key k4 are the same between two protocols.
Therefore, the registers K 4 and C of px , x,rcr and Tx , k, rop are the same. Also, be-
cause the adversary has no access to Bob’s system, the adversary cannot distinguish which
basis Bob uses. Thus, Eve’s system E is also the same between two protocols. Combine

all the arguments above, we have

I Trs (pRS% s rer) — Tre (TR reE) ||, = 0,

where p3%%  pop and 7% o are the subnormalized states that Alice and Bob accept

the protocols. If

| Tr5 (03% s ron) — Xa ® Tras (085% s ron) ||, < €
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then

HTrB (TIQZC%BFCE) — X4 ® Trap (TQT%BFCE) Htr

< ||Trs (7&%5ksrer) — Te (085ksrer) ||, + | Trs (PR Kk pror) — Xa @ Tras (7855, rer) ||,

< HTrB (TI/}T;(BFCE) —Trp (p/I?:(}{BFCE) ot ||TTB (p?(aACCKBFCE) —Xa®Trap (p%aj(;{BFCE)

tr

=0+e.

Complementary Protocol 2: Bob annouces his X measurement outcomes. The two
protocols Com; and Coms, are the same except that Bob annouces p after IP1 in Coms,

while he does not annouces p in Com;.

Complementary Protocol 2 (Comy)
State Preparation

SP1 to SP4 are the same as Com;.

Parameter Estimation

PE1 to PES are the same as Com;.

Information Reconciliation and Privacy Amplification

IP1 Alice measures register A in the Z basis and Bob measures register B in the X
basis. Let 54 4ata be Alice’s measurement outcome and /.« be Bob’s measurement

outcome. Alice sets her reconciliated key k4 1r = 54 data-
[P2 Bob announces .

IP3 Alice runs the algorithm IR.Enc(ka g, mir) and gets a matrix Hjg and the
syndrome 7. Let C'r to be the linear code corresponding to Hir. She announces

HIR and r.
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IP4 Alice randomly chooses a full rank /g,-by-n matrix Hg, such that the rows of

Hy, are linearly independent to the rows of Hg. She announces Hg,.

IPS Alice computes her own final keys k4 sn = Hpnka rr. Bob sets his key register

as (fn,

The final output of Comy is K4 = k4, and Kp = 0.

Lemma 4.15. If Coms is e-secret, then Com; is also e-secret.

Proof. The only difference between the two protocols is whether Bob announces p. Be-
cause annoucing 4 only gives the adversary more power, the secrecy of Comsy implies the

secrecy of Com;. ]

Complementary Protocol 3: Alice does a complex quantum measurement. The two
protocols Comsy and Comgy are the same except that Alice measures register A in the Z
basis at IP1 of Comsy, while Alice measures A by the observables {Z H”‘[j]}i:L... i and

{ZHﬁ“M }7;217... Lein n COmg.

Complementary Protocol 3 (Comg)
State Preparation

SP1 to SP4 are the same as Com,.

Parameter Estimation

PE1 to PES are the same as Coms.

Information Reconciliation and Privacy Amplification

IP1 Bob measures register B in the X basis and let 1« be Bob’s measurement out-

come.
IP2 Bob announces p.

IP3 Alice randomly chooses a linear code Cir from C,, ;,_,,. Let Hig to be a parity

check matrix of C'r. Alice measures register A according to mz observables
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{Z Hir[j] }ie1,. mg- Letr denote the measurement outcome. She announces Hig

and r.

IP4 Alice randomly chooses a full rank /g,-by-n matrix Hg, such that the rows of

Hg, are linearly independent to the rows of Hig. She announces Hy,.

IP5 Alice measures A by the observables {Z#mlil},_, , to determine the (5,-bit

final key k 4.

The final output of Comg is K4 = k4, and Kp = 0.

Lemma 4.16. If Comg is e-secret, then Comy is also e-secret.

Proof. Note that “measuring in the Z basis” is actually measuring by the observables
{Z%},-1... n, Where ¢; is an all zero binary string except that the i-th bit is one.

Because {Z¢},_y ..., {ZH®UY},_) . and {ZHml),_, , are all composed by
Pauli-Z matrices, all the observables are commutative. Thus, it does not matter Alice mea-
sures Aby {Z%},_; ... , beforehand or measures itby { Z#®U1},_, = and {ZHwl1},_, .
The post-measurement states and the statistics of two classical strings r and k4 are the

same between two protocols. Therefore, the two protocols are equivalent which implies

the two protocols have the same secrecy. O

Complementary Protocol 4: Alice tries to fix her register A to the state \+>®". There
are three difference between Coms and Comy. First, Alice needs to estimate the distance
between the state in A and |+)®". Thus, Alice does a sub-routine similar to IP3 in Coms,
but now she measures her state by a set of observables consisting of Pauli X and p serves
as the error syndrome. Precisely, Alice randomly chooses a linear code Cpa from C,, ,— oy,
such that Cpy C Cr. Let HI%A to be a parity check matrix of C’I%A. Alice measures register
A by mpa observables { X Hpy 3] Fiz1, mp, and gets the mpa-bit measurement outcome 7pa.
Alice calculates xpy = IR.Dec(u, Hpy, rpa), which indicates the distance between the
state in A and |+)*".

Second, Alice explicitly does the error correction to A. That is, she applies the unitary

operation Z*" to A. Ideally, the state of register A is |+)“".
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Third, the choice of Hy, has an extra constraint: the rows of Hy, should be orthogonal

to the rows of Hp,.

Complementary Protocol 4 (Comy)
State Preparation

SP1 to SP4 are the same as Coms.

Parameter Estimation

PE1 to PES5 are the same as Coms.

Information Reconciliation and Privacy Amplification
* IP1 to IP3 are the same as Comsg.

IP4 Alice randomly chooses a linear code Cpa from C,, ;,—,, such that Cpy C Cig.
Let H;; to be a parity check matrix of C;. Alice measures register A by mpa
observables { X Hig[5] Fiz1,.. mpy and gets the mpa-bit measurement outcome 7pa.

Alice calculates wpy = IR.Dec(u, Hpz, 7pa)-

IP5 Alice applies the unitary operation Z** to A. (This step can be viewed as trying

fix A to the state |+)“".)

IP6 Alice randomly chooses a full rank /g,-by-n matrix Hg, such that the rows
of Hg, are orthogonal to the rows of Hpy; and the rows of Hy, are linearly

independent to the rows of Hiz. She announces Hg,.

IP7 Alice measures A by the observables {Z#mlil},_; , to determine the (5,-bit

fi

final key k 4.

The final output of Comy is K4 = ka i and Kp = 0fn,

Lemma 4.17. If Comy is e-secret, then Comg is also e-secret.

Proof. Because the rows of Hpy; are orthogonal to the rows of Hy,, the observables in the

set {X U1}, .. and the observables in the set { Z7mll},_, commute. Besides,

""’eﬁn
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because the observables in the set {ZH#ml1},_, , and Z®m are all consist of Pauli Z,
they also commute. Thus, I[P6 and IP7 can be done before IP4 in Com,. The final key is
generated before IP4 and IP5 without influencing the final key. Thus, the two protocols

have the same secrecy. [J

Complementary Protocol 5: Alice does the phase error correction earlier. The only

difference between Com, and Comy is that the measurement by the observables { Z#®Ul},_,

is defered after the error operation Z*®. Thus, after Alice chooses the code C'r at IP3,
she does not measures A immediately. Instead, she chooses Cp, first and tries to fix A to
the state H—>®”. Then, she measures A according to m g observables {Z H‘R[j]}i:L... m

R

and announces the error syndrome 7.

Complementary Protocol 5 (Comj)
State Preparation

SP1 to SP4 are the same as Comy.

Parameter Estimation

PE1 to PES5 are the same as Comy.

Information Reconciliation and Privacy Amplification

IP1 Bob measures register B in the X basis and let 1 be Bob’s measurement out-

come.
[P2 Bob announces pu.

IP3 Alice randomly chooses a linear code Cir from C,, ;,_ . Let Hir to be a parity

check matrix of Crg.

IP4 Alice randomly chooses a linear code Cpa from C,, ;,—p,, such that Cpy C Cig.
Let Hg; to be a parity check matrix of C;. Alice measures register A by mpy

observables { X Hpy 3] Fiz1, mp, and gets the mpa-bit measurement outcome 7pa.
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Alice calculates wpy = IR.Dec(u, Hps, pa)-

IP5 Alice applies an unitary operation Z* to A. (This step can be viewed as trying

fix A to the state |[+)*".)

IP6 Alice measures A according to mr observables {Z Hir[7] }ic1,.. mg- Letr denote

the measurement outcome. She announces Hr and r.

IP7 Alice randomly chooses a full rank /g,-by-n matrix Hg, such that the rows
of Hy, are orthogonal to the rows of HQA and the rows of Hg, are linearly

independent to the rows of Hiz. She announces Hg,.

IP8 Alice measures A by the observables {Z#mlil},_, , to determine the (5,-bit

final key k 4.

The final output of Comj is K4 = k4, and Kp = 0.

Lemma 4.18. [f Comj is e-secret, then Comy is also e-secret.

Proof. Because Cpy C Cig, the rows of Hﬁ are orthogonal to the rows of Hg. Thus, the

observables in the set { X #lil},_, and the observables in the set { Zwbl},_,

> HTIWPA
commute. Because the observables in the set { Z#mll},_, , the observables in the set
{ZHwUY, ) .. and ZZ, all consist of Pauli Z, they all mutually commute. Hence, the
measurements by {ZH®U1},_, = can be defered to IP8 without affecting the measure-
ments by {X7all}, ., {2000}

. and theirselves. ]

4.3.2 Secrecy

Now, we are going to prove the secrecy of Comj. First, we prove two lemmas.

Lemma 4.19. Suppose M is a full rank m-by-n matrix such that m < n and the entries of
M arein {0, 1}. If s is chosen uniformly from {0, 1}" at random, then, for allt € {0, 1}™,
it holds that

Pr (Ms=t)=—.
5+{0,1}7 2m
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Proof. First, we apply the Guassian elimination to M and have a decomposition M = LR,
where L is an m-by-m lower trianguler matrix and R is an m-by-n matrix in row echelon
form. Because M is full rank, each row of R has a pivot (a pivot element is the first
non-zero element in a row such that all the elements below it are zero).

Then, suppose X, Y are two random variables take value in {0, 1}. If Y is uniformly
distributed over {0, 1}, then no matter what distribution of X is, the random variable X &Y
is uniformly distributed over {0, 1}. This is the core idea of one-time pad.

Generally, let X,---, X;, Y}, -+, Y, be random variables such that X;,Y; € {0,1}
for all 7. Suppose each Y; is independently uniformly distributed over {0, 1} for all 7 and
X can be in arbitrary distribution for all . Then, each X; @Y is independently uniformly
distributed over {0, 1} for all .

Back to our lemma, suppose s’ = Rs. Then, the i-bit of s’, namely s[i], comes from
the inner product of R[i] and s. Because s is chosen uniformly from {0, 1}" at random, the
product of the pivot element in R[] and the corresponding bit in s is uniformly distributed
over {0, 1}, which serves as the one-time pad for the i-bit of s’. Thus, for all ¢ € {0,1}™,
it holds that

1

P Rs=t)=—
s<—{0f1}n( s=1) om’

which implies Rs is uniformly distributed over {0, 1}". Next, because L represents the
row operations of the Guassian elimination, the diagonal elements of L must all be 1.
These diagonal elements play the same roles as the pivots of R. Thus, forall ¢ € {0,1}™,
it holds that

1
P LRs=1t)=—.
s<—{0r,1}n (L ) 2m

Lemma 4.19 implies that if we have a secret key £ and a full rank matrix H, then Hk

is also secret.

Lemma 4.20. Suppose Alice measures register A in the X basis after the step IP4 of Coms

and gets the measurement outcome &. Then, if we choose mpy = nHy (0 + €pg) + nepy,
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it holds that

Pr (PE passes A& = 0") < e " 4 2. 27",

Proof. From Corollary 4.13, we know that if Alice measures A in the X basis after [P2

and gets the measurement outcome /14, Then,

Pr <PE passes A Z 1 (pali] # pli]) = (0n + EPE)TL> < e—nng’

=1

Let ¢; be an all zero binary string except the i-th bit is one. Because {XAmll},_,
and {X“},_; ... , commute, whether Alice measures A in the X basis after IP3 does not

change the statistics of the measurement at [P4.

If Hyy is decided by uniformly chosen code from C,, ,,_,,, We can directly apply the
Proposition 2.5. However, the choice of Cp, is under the constraint Cpy C Cig so that C’PlA
is not chosen uniformly at random. In the following, we are going to show that we can
still get a similar guarantee of the Proposition 2.5 even in this case.

Suppose Hig and Hp, are the parity check matrices that Alice chooses at IP3 and
IP4 whose corresponding linear code satisfy Cpy C Cir. Suppose we uniformly choose
a permutation matrix> P at random. Let Hjy = HyP and Hjx = Hpy P. Then, the
corresponding linear code Cj and Cj; also satisfy Cj, C C{z. Because both Hyg and P
are chosen uniformly at random, the distribution of Hig and Hp, are the same as H], and
Hpx.

In the proofs of the Proposition 2.4 and the Proposition 2.5, the reason why we need a
random code is to make the positions of errors uniformly distributed. However, because
the distribution of Hir and Hp, are the same as H{; and H}y, Hir and Hp, are already
equiped with a random permutation. The only problem is that Hig and Hp, share the same
permutation.

From the Proposition 2.5, we know that the probability that Eve successfully finds a
position of errors is upperbounded some value p. Then, for a fixed permutation, if Eve

has two chances to guess the position, the probability that Eve succeed at least once is

2 A permutation matrix is a matrix obtained by permuting the rows of an identity matrix.
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upperbounded by 2p according to the union bound.

Consequently, we have
Pr (PE passes A xpa # pa) < e e 9. Qe
Thus, after we apply the operation Z** at [P4, the measurement outcome & will satisfy

Pr (PE passes A& # 0") < e 4 9. g nem

Now, we can prove the secrecy of Coms.

Lemma4.21. Ifwe choose mpy = nHy(d+€pg)+nepy, then Coms is 2\/6_"51295 + 2.2 nepi

secret.

Proof. Now we analyze the quantum state after IP5. Let 74, be the subnormalized state
of register A such that we drop the portion of rejection. Thus, the probability p,.. that
Alice and Bob accept the protocol is pyee = Tr (74*°). From Lemma 4.20, we know that

if we measure A in the X basis, the measurement outcome £ would satisfy
Pr (PE passes A& # 0") = praig < e e Q. Qe
Because £ = 0" corresponds to the projector |[+%™) (+%"|, we have
(FOMTA* ") = Pace — Drail-

Let TJ;;CC = piTQacc be the re-normalized state conditioned on Alice and Bob accept the

protocol. We have

ac n n n| & n 1 n ace n Drail
PR ) (57 = i) = = (i) =1 - 0%,

acc p acc

Now we analyze the measurement at IP6 and IPS. Because the observables in the set
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{ZH=01Y, ) . and {ZHmEY ), consist of Pauli Z, the statistics of the measure-
ment outcomes remain the same if Alice measures register A in the Z basis before IP6.

Thus, suppose Alice does an imaginary step before IP6:

» IP5.5 Alice measures A in the Z basis and gets a measurement outcome /.

/|lace

Let 7, be the normalized state after IP5.5 conditioned on Alice and Bob accept the
protocol. Because the measurement outcome of |+) in the Z basis is uniformly at random,
the state |[+") (+%"| becomes 5= >, |i) (i after the step IP5.5. Because the fidelity is

non-decreasing under quantum operation, we have

acc 1 - . . acc n n DPrail
F(TQ ’ﬁDw\)ZF(TL JHE) (8 = 1 -
i=1

pacc

If Alice does the imaginary step IP5.5, measuring register A by observables { Zf®U1},_,;

STIR
and {ZHmlil},_, 1. ¢, are equivalent to calculates r = Hprpuy and ky = Hgnfiz respec-
tively. By Lemma 4.19, we know that if the register A is in the state 5= >, |¢) (i|, 7 and

k 4 will be uniformly distributed and independent to each other.

Suppose px , kyrcr = Real (Coms, A) is anormalized state given an adversary A and

PR, Fop 18 the sub-normalized state that we drop the portion of rejection in pg, i ro -

lacc Aace lacc lacc .
Let PKAKsFCE = pi ,oKAKBFCE and py = Trppcr PKAKpFCE )- Because the fidelity

is non-decreasing after IP6, IP7 and IP§, we have

acc acc 1 . . . Prail
('KA %Zm k|)>F<' nZ|z)(@|>:1— .
i=1

kel pacc

Now we consider Eve’s system. By Corollary 2.2, there exists a state opcp € Hrop

such that

acc acc pfail

kek ace
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By the relation between the trace distance and the fidelity, we have

acc 1 acc Prail
Presron — S > k) (k| @opep|| <, |1-F (:OlKAFCE7 S Z k) (k| ® 0F0E> = :
ke tr

acc

A lacc .
Because pi\Tcp = Pacc * Pk, pops MUltply by pace, we have

/I\?:CFCE Z |k k| ® ?7&5%' = v/ Pacc/ Pail < /Prail,

tr

where 0355, is defined by pae. - 0pcr. By Lemma 3.5, we have

/\acc Aacc Aace Aacc
PKAFCE ~ 2gf § k) (k| ® prcE PKAFCE — 2£f E k) (k| ® ot

<2y

tr tr

< 2/Pra1 < 2V e e + 2. 2 ne . (4.12)

Because the argument above holds for any adversary .4, we conclude that Comyj is 2 Ve 2. 2-nem-

secret. O]

Combining Lemma 4.14, 4.15,4.16,4.17 and 4.21, we can conclude this section with

the following corollary.

Corollary 4.22. Ifwe choose mpy = nHy(d+€pg)+nepy, then Hyby is 2\/6*"6% 4+ 2.2 nep

secret.

4.4 The Security of BB84

Theorem 4.23 (the security of BB84). Let myy = nHy (6, + €pe) + neg and mpy =

nHy (04 + €pg) + nepy. Then, BB84 is f (n,n, €pg, €r, €py)-secure with the key rate

1
Rppsy = m [1 — Hy (0p + €pg) — Ha(0m + €pr) — €1r — €pal (4.13)
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where

f(n.m, epe, €, €pa) = e~ 4 97RO/ e~y 4 9. 9—nep 4 9.9~ O0n?).

Proof. From Lemma 4.10, we know that Hyb, is (27"“® 4 e¢~"¢)-correct if we choose

mir = nHs (0m + €pe)+ner. From Corollary 4.22, we know that Hyb is 2\/6_”6§E + 2. 2-nera
secret, if we choose mps = nHy (5 + €p) + nepa. From Proposition 3.4, we can combine

the correctness and the secrecy so Hyb; is

(e‘"egﬁ + 27NR 2\/ e e 42 - 2—”€PA> -secure. Finally, by Corollary 4.7, the security
of BB84 can be reduced to Hyb, with the parameter loss 2 - 2-0(m*)  Thus, we have that

BB84 is f (n,n, €pg, €1r, €pa )-secure, where

F (0,7, €pp, €, €pa) = €7 4 27 4 9\ eneh 49 . 2-nem 9. 9~OW),
As for the key rate, Alice sends (44 7)n qubits in the SP stage, and the final key length
is lgn, = n — mr — mpa. Thus, the key rate is

b 1
44+mn  4+n

Rppss = ( [1 — Hy (0 + €pe) — Ho(0m + €pp) — €1r — €pa) -

]

We make a brief remark about the key rate when n goes to infinity. In the early de-
velopment of QKD, most of the papers only analyzed the key rate asymptotically. In
Theorem 4.23, for all 7, epg, €r, €pa > 0, f (1,7, €pg, €1r, €pa) can be arbitrary small as n
goes to infinity. Thus, we can choose 7, €pg, €1r, €pa as a very small value and Equation

(4.13) becomes

1
Rppsa = 1 [1—2H; (6w)] ,

which meets the results of previous works [SP00, GLLP04].
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Chapter 5

Conclusion

In this thesis, we gave a self-contained security proof of BB84 by the uncertainty prin-
ciple, with full explanation of the security definitions and necessary assumptions. We
also showed that the uncertainty-principle-style proof can be applied to the protocol that
information reconciliation is done without encryption, which is the case in the practical
use.

To make the reduction rigorous and precise, we formulated the notion of equivalence
by the indistinguishable game. In Section 4.1, we applied this new definition in the proof
and analyzed the parameter loss precisely. Besides, we specify information reconciliation
such that only Alice announces the error syndrome, so Bob can change his measurement
bases from Z to X without detecting by Eve. Thus, the communication of information
reconciliation, the error syndrome, does not need to be encrypted. Finally, we get a precise

relation between the key rate and the security level of BB84 in Section 4.4.

5.1 Future Works

As we mentioned in Section 1.3, there are three main techniques to prove the security of
QKD. Tomamichel and Leverrier [TL17] gave a self-contained proof based on entropic
relations. It is valuable to give a self-contained literature for the entanglement-distillation-
style proof, especially in the finite key regime.

Also, it is interesting to compare different kinds of proofs. In Section 4.1, we reduced
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the security of BB84 to another entanglement-based protocol Hyb,. This reduction is also
the essential part of the entanglement-distillation-style proof in [SP00]. Koashi noticed
that the control complementary observable is correlated to the entanglement distillation
[Koa07]. It is interesting to compare these two kinds of proof in the context of security
proof.

In the entropic-relation-style proof, the length of the final key is guaranteed by leftover
hash lemma. It is also interesting whether leftover hash lemma is correlated with the

complementarity or entanglement distillation.
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