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What is QUANTUM?



Max Planck (1858-1947)

E = nhv



—_—

PARTICLE

\




Richard Feynman (1918-1988)

therefore, the problem is, how can we simulate the quantum mechanics?
There are two ways that we can go about it. We can give up on our rule
about what the computer was, we can say: Let the computer itself be built
of quantum mechanical elements which obey quantum mechanical laws. Or




Quantum State

In quantum computing, we use Dirac notation “| -)” to represent a state.
For example, a state of a coin could be
|Head) and |Tail).
Or, a state of a die could be
11),12), [3), |4), [5) and [6).
A qubit is a quantum object that has two states, usually written as

|0) and |1).
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Superposition



Classical Coin

: Tail
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— |Head) + — | Tail
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Superposition

What is the difference between classical states and quantum states?
A classical bit should either be O or be 1.
A qubit can be superposition of both:

a|0) + B|1).
* When we measure it, we get

0 with probability |a|?;
1 with probability |B|?.

* Since the sum of the probability must be one,
lal® + |BI? = 1.
Example (Fair Quantum Die )

What is the state of a fair guantum die before we measure it?

)+ 12) 4+ —13) + — [4) + — |5} + —|6)
Te It gl e it TRl T st e
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Entanglement



Entanglement

Alice
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Composite System

What happens if we have more qubits?

For two qubits, we can write two-qubit system as

a,|00) + a,|01) + a3|10) + a,|11),
where |a{|? + |a,|? + |as|? + |as]? = 1.
In general, if we have N qubits, the system is

2N

D ),

x=1

N
where Y2_, a,]? = 1.
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Independent State

If we have two qubits:
(@110} + B1|1)) (a2 |0) + B,|1)).
The composite system follows distributive law:

a,0,|00) + a1 5,|01) + B1a,|10) + B15,|11).

For example, condition on the 15t qubit is O, the residue state is

10) (“1“2|0> + a;5,1)

= 10)(a,|0) + B,|1)).
NTAL ) 10)(a; B2(1))
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Entanglement

Consider the following function U such that

Ulx) = [x)|—x).
If the input is |0), the outputis [0)|1).

If the input is |1), the outputis [1)]0).

. . .1 1
What happens if the input is % |10) + % |1)?

U (100 +=11) = —=1011) +—=1)0)
NP R AN RN
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Entanglement

For the state

L jo1) + —110)
V2 V2o

can we write it as a product state

(@110} + B1|1)) (a2 |0) + B2]1))?

No! If we measure one of the qubits, the coefficients of the other qubit

will change.

We say these two qubits are entangled.
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Mathematical Formalism

Postulate 1: A quantum system is described a unit vector in the Hilbert
space.

* Hilbert space is defined as an inner product space over C.

For a single qubit, we write |0) = [(1)] 1) = [(1)] :

In general,

«|0) + B|1) = [g]

Example (EPR pair)

The state in the previous slide is the famous Einstein-Podolsky-Rosen (EPR) pair:
— O -
Y
01) +10) _ [ /32
2 Ly |
Z &
L 0 y
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Mathematical Formalism

Postulate 2: Quantum operation in a closed system is described by a

unitary operator U.

* An operator U is unitary if for all |[v) € V , operator U satisfies

UM = [lvMI.

Example (NOT gate)

Let X = - 1].Then,

Lo 0 17111 0
X10) = || 0”0]=[1]=|1>'

X gate is the NOT gate in quantum computing.
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Quantum Parallelism

A single guantum computer can compute multiple computations

simultaneously by the effect of superposition.

For example,

Ur (12)[0)) = |x) |f(x))

) = = Y225 (1x)]0))

Ur I¥) = = 2325 (1)1 ()

It seems that 2,2;51 |f (x)) can be computed in one operation.
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Quantum Parallelism

Example (Modular Exponential)

Let f, y(x) = a* mod N, and Uy is an unitary operator corresponding to

fa,N(x)-

Now we havea = 7,N = 15 and

1
) =5(10) + 1)+ [2) + 3).

Then,

1
Ur(19)10)) = 5 (10)[1) + I1)7) + 12)]4) + [3)[13)).

The example shows that we somehow can compute
7°,71,72%,73 (mod 15) simultaneously.

The problem is “how we extract the answer?” J
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Quantum Computer --- lon Trap
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Quantum Computer --- Solid State Based
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2. Grover Algorithm
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Needle-in-a-Haystack

Suppose you have N envelopes. One of them has money inside but others

are empty.

How many trials do you need to do for finding money?
* Worst case: N — 1 times.

* Inaverage: N/2 times.

Classically, we need to try O(N) times.

Grover suggests an algorithm for such problem only takes O(W)

operations.
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Needle-in-a-Haystack
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Grover Algorithm

Idea: Maximize the amplitude of the right answer in a superposed state.

One Grover iteration consists of two steps:

Phase inversion Inversion about mean

M_M% 'LHT'L_ML

One Grover algorithm only need O(v/N) Grover iterations.
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Grover lteration

First, we prepare a superposed state

N
1
) = ﬁ;|x>.

Assume the red one is the right answer we want to obverse.

amplitude

> |x)
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Grover lteration

We inverse the amplitude of the right answer,
1 —1
— [x) = —=x).

VN N

amplitude

> |x)

This step is called phase inversion.
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Grover lteration

The orange line is the average of all amplitudes.

amplitude

> |x)
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Grover lteration

amplitude

> |x)

This step is called inversion about mean.

Hao Chung (#£%) Quantum Cryptanalysis



Grover Algorithm

If we run O(W) Grover iterations, the red line will goes close to 1.

One Grover iteration consists of two steps:

Phase inversion Inversion about mean

MJ_I_LH% m%'_.m
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Phase Inversion

Assume we have a classical function

Fx) = 1,if x is the answer we want
0, otherwise.

Let Ur be a operator such that
Urlx)q) = |x)q @ f(x)),

which can be viewed as applying NOT gate on the desired state.

Magically, if we set |g) = lm%, we have

1) —|0)
V2

which is the phase inversion we want.

Urlx)q) = x) = —[x)lq),
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Inversion about Mean

Q: If i is the average, how can we inverse x about u?
A: Because (x — ) is the difference between them,

u—((x—w=2u—x
attains our goal.

: }(x—u)
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Inversion about Mean

To compute the average, we assign

r 1 1 11
Z_n 2_Tl ann Z_n
1 1 1
1

on on on

where it makes
Xy -
X

al "2 =1"].

_in_ l’l

Then (24 — I) is the operator of inversion about mean.
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Example

Example (Grover iteration)

First, we prepare a superposed state and the red one is the amplitude we
want to enhance.
1 1 1 1

1
=15 % E EE E E e

Then, we inverse the amplitude of the target.

0, = 1 1 1 -1
V2 x/‘x/‘x/"x/"x/‘fx/‘x/‘

1

\/§\/_

The average of these numbers is so after inversion about

3
\/_I
mean, we have

1 1 1 1 1 5
¥s) = |

2v/8 2v8 2v8 2v8 2v8 28 28 28l
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Example

Example (Grover iteration)

If we do another Grover iteration, we get

-1 -1 -1 -1 -1 11 -1 -1
=% o i W WE W o i)
Note that % = 0.97227. The probability of getting right answer is
|£2z09453
4+/8 I

We can find the desired answer with probability 95% only using two
iterations!
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Grover Algorithm on Cryptography

If we have a plaintext-ciphertext pair (m, ¢), then we can design the
“envelope” as

1,¢c = Enc,,(m);
0, otherwise.

f(x)={

Assume we want to break AES-128. About 2°* Grover iterations could find

the correct key with high probability.
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3. Shor Algorithm
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Shor Algorithm

Input: an odd composite number N

Output: a non-trivial factorization of N with some probability

Quantum Order-finding CIaSSICal

Big number Factor of
N computer solution computer N
— — —
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Order-finding Problem

Given a and N, find the smallest positive integer r such that

a” =1 mod N.

For example, ifa = 7,N = 15:

79mod 15=1
71 mod 15=7
72 mod 15 = 4
73 mod 15 =13
74mod15=1 so, the order r is 4.
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Reduce Factoring to Order-finding Problem

If we have
a"=1(modN),
then
N|a" —1.
If r is even, we have

N|(a7? —1)(a"7% +1).

It cannot happen that N |(a”/? — 1), because this would mean that r was

not the order of a. If N J(a'/? + 1), then gcd(N, a"/? + 1) is a non-trivial
factor for N.

If a is chosen randomly from Zy,, and r is the order of a, then

Prlr is even AN f(a"/? +1)] >

N | =
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Note that f, y(x)

7x

Hao Chung (&%)

Quantum Part

a® mod N is a periodic function.

79mod 15=1
71 mod 15=7
72 mod 15 =4
73 mod 15 =13
79mod 15 1
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Quantum Part

Note that f, y(x) = a* mod N is a periodic function.

We can find the period by quantum Fourier transform (QFT).
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Quantum Circuit

100) + [4) +18) + [12)) 1)
101) + 15 +19) + 13) |7

After modular exponential, we have

_|_

+%(2>+ 6) + |10) + [14)) |4)

F2(13) 4 17) + 1) +]15)) [13)

If we measure the second register and get |7), then the first
register will only remain the red part.

Other parts will “collapse”

Anfl we find the period “4.”
Show it in graph
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Quantum Circuit

0) —7

a,x*amod n >

Measure

Step 5, Measure

register 1.

a,0>
o | Step 4, inverse Quantum Fourier
Step 1, initialize state Transform of register 1.
H QFT*
U Measure
Step 2, apply modular Step 3, observe register 2

exponentiation

Hao Chung (&%)
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Time complexity

Assume we want to factor a n-bit number N:
« Modular exponential: ©(n>)
« QFT: ©(n?)

1
logn

* Succeed probability: Q(

)

Thus, the total time complexity is O (n3logn).

Example (RSA-2048)

To factor a 2048-bit number, we need roughly 20483 - log 2048 ~ 10!
operations. If we assume each operation takes 1 microsecond (us) on a
guantum computer, it takes only one day to factor the number.
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Shor Algorithm on Elliptic Curves

Shor’s discrete logarithm quantum algorithm for
elliptic curves

John Proos and Christof Zalka

Department of Combinatorics and Optimization
University of Waterloo, Waterloo, Ontario
Canada N2L 3G1

e-mail: japroos@math.uwaterloo.ca  zalka@iqc.ca
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Shor algorithm

Phase

Estimation == Order-Finding ==+ Factoring

Given a unitary matrix U
and a vector |v), find the
phase of eigenvalue 6
such that

Ulv) = e?™|p).

Given a and N, find the Given a integer N,
smallest positive integer find a non-trivial
r such that factor of N.

a” =1 mod N.

Hao Chung (&%)
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Phase Estimation

Because unitary matrices preserve the length, so its eigenvalue
must have the form of e270

Definition (Phase Estimation)

Given a unitary matrix U and its eigenvector |v), find the
phase of eigenvalue 6 € [0,1) such that
Ulv) = e?™9|p).
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Phase Estimation

Given a unitary operator U and an integer k. Let |@) be an eigenstate

of U.

Consider the following circuit:

L9

|®)

If U is a unitary matrix, we have

Uk|¢> — ezmekl(p)_

%)

U*|$)

Hao Chung (&%)
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Phase Estimation

If we make the first register in a superposed state:

|0) H ’ 1 2t

|®) U U*|$)

Because U¥|¢p) = e2™0%|¢), we have

25-1

25-1 .
\/_z |k)(82nu9k|¢>) \/_ 2n19k|k> |¢)
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Phase Estimation

If we make the first register in a superposed state:

10) H * %Z;:emek'“

|®) U |®)

Because they are in the product state (15t and 2" are independent), we
can just focus on the first register.
We have

25—-1

. 1 .
52, 62n16k|k) ) = (\/_Z_Szk=0 327T19k|k>) X |P).
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Phase Estimation

Suppose 0 happens to have a form of 6 = zis, for some integerj €

{0,...,2°5 —1}.
Then,

2°-1 25-1
\/_2 Znuk/zslk) \/_z a)jk|k) — |¢j>»

. S
where w = e27/2”,

It can be shown that {|¢®y), ..., |¢,s_1)} forms an orthonormal basis.
That is,

1,ifj =j';

(¢51¢;1) = {O,ifj £,
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Phase Estimation

There is a unitary matrix F satisfies F|j) = |q§j).

That is, the j* column of F is |¢;) = \/%212;—01 w/*|k) .
Write it in the matrix form, we have
I 1 1 1 1
1 1 o w? e @l
F = 1 wz (1)4 cee wZ(ZS—l) )
\/? : : . .
1 w21 p2e*-n . ,@-12]

which is exactly the discrete Fourier transform.

In quantum computing, we call it “quantum Fourier transform.”
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Phase Estimation

Thus, if we apply inverse quantum Fourier transform (F~1) to the first

register, we get |j).

If we measure it, we getjand 6 = é is our desired phase estimation.

The whole circuit for phase estimation is

|0) H I QFTs — /)

[ U |®)

Hao Chung (&%)
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Phase Estimation

How about @ is not in the form of% ?

It turns out that the state after QFT* is

25-125—1 25-1 25—-1

1 . R 1 (O i9S _
= z Z e 2mi(k8—kj/2%)| jy = z —~ Z e2mik(6-7/2%) | |y,
k=0 j=0 j=0 k=0
The probability of measuring j is
1 = J :
k=0
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Reduce Order-Finding to Phase Estimation

To solve order-finding problem, we consider the following unitary
operator

Ugly) = lay (mod N)).
Let r be the order of a in Zy. Then the following vector is an eigenvector

of U,

o) = %(m Fla) + la2) + -+ [ 1),

because Ug|,) = \/—17(|a) + la?) + -+ |a" ") + |a"))

= %(la) +]a?) + 4 la" ) + (1))

— |1/Jo>-
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Reduce Order-Finding to Phase Estimation

Let , = 2T,

In general, the eigenvectors of U, have the form of

1 t(r—
o) = —=(11) + wrtla) + wr2la?) + - + 0 TP,

NG

since
Uglpe) = a)ﬁll,bt)

Then, phase estimation can help us find
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Reduce Order-Finding to Phase Estimation

1)+ wrtla) + wp2la?) + -+ w; Ve )

1
e = =
How do we prepare |i;) if we do not know 7?

Fortunately, we have
r 1r-1

IZ o) = Zzwrklla = [a% = |1)

|0) H I QFTH — )

1) U, 1)
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Reduce Order-Finding to Phase Estimation

How do we find r if we only knaw

We know ea We do not know

Fortunately, we can do it by continued fraction, because the following
theorem.

Theorem

1
—2r

Su ppose

t .
Then;lsa

convergent of the continued fraction for é
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Continued Fraction

The continued fraction of a number s is

S=a0+

In this case, we can express arbitrary number s as a sequence of

positive integers (ag, a, -+, ay).
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Continued Fraction

Example (continued fraction of 31/, 3)

. L 31, . .
First, we split 5 into integer part and fraction part,

31 5 4 5
13 7 13°
Then, inverse the fraction part and get
31 5 1 5 1
BB
5 5
Similarly,
51 _ 2 + L _ 2 + .
= 2+~ —
5 1
3 L=
1 +7

Thus, (2,2,1,1,2) is the continued fraction expansion of %

Quantum Cryptanalysis
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Continued Fraction

The ith convergent of a continued fraction (agy, aq, -, ay) is the
number that (ay, a4, -+, a;) represents.

Let p; denote the it" convergent of (ag, ay, -+, ay).

Then,
Po = Qyp.
1
=ag +—.
P1 0T
_ 1
Py = ap + T
a1+—
az
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Example

Example (Shor Algorithm for Factoring)

Assume we want to factor 15. We choose a = 7. The first step is to
prepare a superposition state

1
¥) =3 ) 010).

x=0
Next, we compute the modular exponential and get
1
[¥2) = 2 (0)I1) + [1)]7) + -+ 115)[13))

1

:Z{( 0) + [4) + [8) +[12))[1)
+(|1) + [5) + |9) + |13))]|7)
+(|2) + |6) + |10) + |14))|4)
+(I13) +|7) + |11) + |15))|13)}.
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Example

Example (Shor Algorithm for Factoring)

The quantum Fourier transform yields

1
7 10y +14) +18) +]12))|1)
+(10) + i[4) — |8) — i[12))]7)

+(10) — [4) +18) — [12))4)
+(10) — i|4) — [8) +i[12))[13)}

If we measure the first register, we can get 0,4,8 or 12 with the same
probability.

If the measurement result is 4 or 12, we can get the correct order by
condinued fraction.
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How many qubits do we need?

t 1

t. : t.
Suppose —is a rational number such that é — - >. Then —isa

<

2T

convergent of the continued fraction for é

Note that we do not know 7 in advance.

However, r must be smaller than N, the integer we want to factor. So
j ot 1 1

—_— < — S ———

25 rl ™ 2r¢2 7~ 2N-Z

If £ can accurate to log 2N ? bits, the theorem applies.
25
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How many qubits do we need?

Assume we want to factor a n-bit number N.
The 1% register need log 2N4 = 2n + 1 qubits.

The 2" register needs to compute a* mod N, so it needs n qubits to

save a”*.

Because the 1t register needs 2n qubits and the 2"d register needs n

qubits, we need 3n qubits in total.
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Assume we want to factor a n-bit number N.

Time Complexity O(n3logn)

Number of qubits 3n
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Suggested Reading

* Quantum Computing: John Watrous’ Lecture Notes

* Shor and Grover Algorithm: John Watrous’ Lecture Notes

e Suggested reading for quantum key distribution (QKD):
1. BRREXE

(https://medium.com/@chunghaoblog/qkd-c6b82a9b04e0)

2. BIEEHR (https://youtu.be/6H 9I9N3IXU)

3. &F:ETE : Thomas Vidick’s lecture note
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