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Outline

1. Introduction to quantum computing

2. Grover Algorithm

3. Shor Algorithm
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What is QUANTUM?



6/74Hao Chung (鍾豪) Quantum Cryptanalysis

𝐸 = 𝑛ℎ𝜈

Max Planck (1858-1947)
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Richard	Feynman (1918-1988)
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Quantum	State

In	quantum	computing,	we	use	Dirac	notation	“| ⋅〉”	to	represent	a	state.

For	example,	a	state	of	a	coin	could	be	

|Head〉 and	|Tail〉.

Or,	a	state	of	a	die	could	be	

1 , 2 , 3 , 4 , 5 and	 6 .

A	qubit	is	a	quantum	object	that	has	two	states,	usually	written	as

	 0 and	 1 .
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Superposition
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10
1
2 : Head

1
2 : Tail

Classical Coin
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10
1
2�
Head +

1
2�
|Tail⟩

Quantum Coin
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Superposition
What	is	the	difference	between	classical	states	and	quantum	states?

A	classical	bit	should	either	be	0	or	be	1.

A	qubit	can	be	superposition	of	both:

𝛼 0 + 𝛽|1〉.
• When	we	measure	it,	we	get	

? 0	with	probability	 𝛼 @;
		1	with	probability	 𝛽 @.		

• Since	the	sum	of	the	probability	must	be	one,
𝛼 @ 	+	 𝛽 @ 	= 	1.

What	is	the	state	of	a	fair	quantum	die	before	we	measure	it?	

Example	(Fair	Quantum	Die	)

1
6�
1 +

1
6�
2 +

1
6�
3 +

1
6�
4 +

1
6�
5 +

1
6�
6 .
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Superposition
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Entanglement
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Entanglement
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Composite System

What	happens	if	we	have	more qubits?

For two qubits, we can write two-qubit	system as

𝑎D 00 + 𝑎@ 01 + 𝑎E 10 + 𝑎F 11 ,

where 𝑎D @ + 𝑎@ @ + 𝑎E @ + 𝑎F @ = 1.

In general, if we have 𝑁 qubits, the system is

H𝑎I|𝑥⟩
@K

ILD

,	

where ∑ |𝑎I|@ = 1@K
ILD .
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Independent State

If	we	have	two	qubits:

(𝛼D 0 + 𝛽D|1〉)(𝛼@ 0 + 𝛽@|1〉).

The	composite	system	follows distributive law:

𝛼D𝛼@ 00 + 𝛼D𝛽@ 01 + 𝛽D𝛼@ 10 + 𝛽D𝛽@|11〉.

For example, condition on the 1st qubit is 0, the residue state is

0
𝛼D𝛼@ 0 + 𝛼D𝛽@ 1

|𝛼D|@
� = |0⟩(𝛼@ 0 + 𝛽@|1〉).



19/74Hao Chung (鍾豪) Quantum Cryptanalysis

Entanglement

Consider the following function 𝑈 such that

𝑈 𝑥 = 𝑥 ¬𝑥 .

If the input is 0 , the output is 0 1 .

If the input is 1 , the output is 1 0 .

What happens if the input is D
@�
0 + D

@�
1 ?

𝑈
1
2�
0 +

1
2�
1 = 	

1
2�
0 1 +

1
2�
1 0 .
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Entanglement

For	the	state

1
2�
01 +

1
2�
10 ,

can	we	write	it	as	a	product	state

(𝛼D 0 + 𝛽D|1〉)(𝛼@ 0 + 𝛽@|1〉)?

No! If	we	measure	one	of	the	qubits,	the	coefficients	of	the	other	qubit	
will	change.

We	say	these	two	qubits	are	entangled.
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Mathematical	Formalism

Postulate	1:	A	quantum	system	is	described	a	unit	vector	in	the	Hilbert	
space.

• Hilbert	space	is	defined	as	an	inner	product	space	over	ℂ.

For	a	single	qubit,	we	write	 0 = 1
0 , 1 = 0

1 .

In	general,
𝛼 0 + 𝛽 1 = 	

𝛼
𝛽 .

The	state	in	the	previous	slide	is	the	famous	Einstein-Podolsky-Rosen	(EPR)	pair:

01 + |10〉
2�

=

0
1

2�T
1

2�T
0

.

Example	(EPR	pair)
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Mathematical	Formalism

Postulate	2:	Quantum	operation	in	a	closed	system	is	described	by	a	

unitary	operator	𝑈.

• An	operator	𝑈 is	unitary	if	for	all	|𝑣〉 	 ∈ 	𝑉	,	operator	𝑈 satisfies

𝑈|𝑣〉 = 	 |𝑣〉 .

Let	𝑋 = 	 0 1
1 0 . Then,

𝑋 0 = 	 0 1
1 0

1
0 = 0

1 = 1 .
𝑋 gate	is	the	NOT	gate	in	quantum	computing.

Example	(NOT	gate)
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Quantum	Parallelism

A	single	quantum	computer	can	compute	multiple	computations	

simultaneously by	the	effect	of	superposition.

For	example,

𝑈Y	(|𝑥〉|0〉) 	= 	 |𝑥〉	|𝑓 𝑥 〉

𝜓 = D
@\� ∑ (|𝑥〉|0〉@\]D

IL^	 )

𝑈Y	 𝜓 = D
@\� ∑ (|𝑥〉|𝑓 𝑥 〉@\]D

IL^	 )

It	seems	that	∑ |𝑓 𝑥 〉@\]D
IL^	 can	be	computed	in	one	operation.
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Quantum	Parallelism

Example	(Modular	Exponential):

The	example	shows	that	we	somehow	can	compute	
7^, 7D, 7@, 7E	(mod	15) simultaneously.	

Let	𝑓b,c(𝑥) 	= 	𝑎I	mod	𝑁,	and	𝑈Y	is	an	unitary	operator	corresponding	to	
𝑓b,c(𝑥).
Now	we	have	𝑎	 = 	7, 𝑁	 = 	15	and

𝜓 =
1
2
(|0〉 + 1 + 2 + |3〉).

Then,

𝑈Y(|𝜓〉|0〉) =
1
2
(|0〉|1〉 + 1 |7〉 + 2 |4〉 + |3〉|13〉).

Example	(Modular	Exponential)

The	problem	is	“how	we	extract	the	answer?”
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「量子平行」是利用疊加的特性，
達到一次操作即可同時計算多個疊加態

大多數量子演算法的設計巧妙在於
「如何操控係數，使我們測量到需要的結果」

量子態可由一個「單位向量」表示，
而量子運算可由一個unitary 矩陣表示

Summary
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Quantum Computer --- Ion Trap



27/74Hao Chung (鍾豪) Quantum Cryptanalysis

Quantum Computer --- Solid State Based
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Outline

1. Introduction to quantum computing

2. Grover Algorithm

3. Shor Algorithm
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Needle-in-a-Haystack

Suppose	you	have	N	envelopes.	One	of	them	has	money	inside	but	others	

are	empty.	

How	many	trials	do	you	need	to	do	for	finding	money?

• Worst	case:	𝑁 − 1 times.

• In	average:	𝑁/2 times.

Classically, we need to try 𝑂(𝑁) times.	

Grover	suggests	an	algorithm	for	such	problem	only	takes	𝑂 𝑁�

operations.	
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Needle-in-a-Haystack
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Grover Algorithm

Idea:Maximize	the	amplitude	of	the	right	answer in a superposed state.

One	Grover	iteration	consists	of	two	steps:	

One Grover algorithm only need 𝑂( 𝑁� ) Grover iterations.

Phase inversion Inversion about mean
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Grover Iteration

First, we prepare a superposed state

𝜓 =
1
𝑁�
H 𝑥 .
c

ILD
Assume	the	red	one	is	the	right	answer	we	want	to	obverse.

⋯

am
pl
itu

de

|𝑥⟩
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Grover Iteration

We inverse the amplitude of the right answer,
1
𝑁�
𝑥 →

−1
𝑁�
𝑥 .

⋯

am
pl
itu

de

|𝑥⟩

This step is called phase inversion.
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Grover Iteration

The orange line is the average of all amplitudes.

⋯

am
pl
itu

de

|𝑥⟩
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Grover Iteration

⋯

am
pl
itu

de

|𝑥⟩

This step is called inversion about mean.
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Grover Algorithm

If we run 𝑂 𝑁� Grover iterations, the red line will goes close to 1.

One	Grover	iteration	consists	of	two	steps:	

Phase inversion Inversion about mean
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Phase Inversion

Assume we have a classical function

𝑓 𝑥 = 	i1, if	𝑥	is	the	answer	we	want0, otherwise.
Let 𝑈Y be a operator such that

𝑈Y 𝑥 𝑞 = 𝑥 𝑞 ⊕ 𝑓 𝑥 ,
which	can	be	viewed	as	applying	NOT	gate	on	the	desired	state.

Magically, if we set 𝑞 = ^ ]|D⟩
@�

, we have

𝑈Y 𝑥 𝑞 = 𝑥
1 − 0

2�
= − 𝑥 𝑞 ,

which	is	the	phase	inversion	we	want.	
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Inversion about Mean

Q: If	𝜇 is	the	average,	how	can	we	inverse	𝑥 about	𝜇?
A: Because (𝑥 − 𝜇) is	the	difference	between	them,

𝜇 − 𝑥 − 𝜇 = 2𝜇 − 𝑥
attains	our	goal.	

𝑥 − 𝜇
𝑥

𝜇
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Inversion about Mean

To compute the average, we assign

𝐴 =

1
2u

1
2u

1
2u

1
2u

…
1
2u

…
1
2u

⋮ ⋮
1
2u

1
2u

⋱ ⋮

…
1
2u

,

where it makes

𝐴

𝑥D
𝑥@
⋮
𝑥@\

=
𝜇
𝜇
⋮
𝜇
.

Then 2𝐴 − 𝐼 is the operator of inversion about mean.
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Example

First,	we	prepare	a	superposed	state	and	the	red	one	is	the	amplitude	we	
want	to	enhance.

𝜓D =
1
8�

1
8�

1
8�

1
8�

1
8�

1
8�

1
8�

1
8�
.

Then,	we	inverse	the	amplitude	of	the	target.	

𝜓@ =
1
8�

1
8�

1
8�

1
8�

1
8�

−1
8�

1
8�

1
8�
.

The	average	of	these	numbers	is
{⋅ |

}�
] |

}�

~
= E

F ~�
, so after inversion about

mean, we have

𝜓E =
1
2 8�

1
2 8�

1
2 8�

1
2 8�

1
2 8�

5
2 8�

1
2 8�

1
2 8�

.

Example (Grover iteration)
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Example

If	we	do	another	Grover	iteration,	we	get	

𝜓F =
−1
4 8�

−1
4 8�

−1
4 8�

−1
4 8�

−1
4 8�

11
4 8�

−1
4 8�

−1
4 8�

.

Note that DD
F ~�

= 0.97227. The probability	of	getting	right	answer	is	

11
4 8�

@
≈ 0.9453.

We	can	find	the	desired	answer	with	probability	95%	only	using	two	
iterations!

Example (Grover iteration)
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Grover	Algorithm	on	Cryptography	

If we have a plaintext-ciphertext pair (𝑚, 𝑐), then we can design the

“envelope” as

𝑓(𝑥) 	= 	 i1, 𝑐 = 𝐸𝑛𝑐I(𝑚);	
0, otherwise.

Assume	we	want	to	break	AES-128. About 2�F Grover iterations	could	find	

the	correct	key	with	high	probability.	
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Outline

1. Introduction to quantum computing

2. Grover Algorithm

3. Shor Algorithm
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Shor	Algorithm

Input:	an	odd	composite	number	N

Output:	a	non-trivial	factorization	of	N	with	some	probability
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Order-finding	Problem

Given	𝑎 and	𝑁,	find	the	smallest	positive integer	𝑟 such	that	

𝑎� ≡ 1	𝑚𝑜𝑑	𝑁.

For	example,	if	𝑎 = 7,𝑁 = 15:

7			mod	15	=	1

7			mod	15	=	7

7			mod	15	=	4

7			mod	15	=13

7			mod	15	=	1

1

2

3

4

0

so,	the	order	𝑟 is	4.
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Reduce	Factoring	to	Order-finding	Problem
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Quantum	Part

Note	that	𝑓b,c(𝑥) 	= 	𝑎I	mod	𝑁 is	a	periodic	function.

7			mod	15	=	1

7			mod	15	=	7

7			mod	15	=	4

7			mod	15	=13

7			mod	15	=	1

1

2

3

4

0

𝑥

7I
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Quantum	Part

Note	that	𝑓b,c(𝑥) 	= 	𝑎I	mod	𝑁 is	a	periodic	function.

We	can	find	the	period	by	quantum	Fourier	transform	(QFT).



49/74Hao Chung (鍾豪) Quantum Cryptanalysis

Quantum	Circuit

Other	parts	will	“collapse”

Show	it	in	graph
4 4 4

And	we	find	the	period	“4.”

After	modular	exponential,	we	have

If	we	measure	the	second	register	and	get	|7〉,	then	the	first	
register	will	only	remain	the	red	part.
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Quantum	Circuit

|0〉 H

|1〉 U Measure

MeasureQFT+

Step	1,	initialize	state

Step	2,	apply	modular	
exponentiation

Step	3,	observe	register	2

Step	4,		inverse Quantum	Fourier		
Transform	of	register	1.

Step	5,		Measure	
register	1.

|	a,0	>
|	a,x^a mod	n	>
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Time	complexity

Assume	we	want	to	factor	a	𝑛-bit	number	𝑁:
• Modular	exponential:	Θ(𝑛E)
• QFT:	Θ(𝑛@)

• Succeed	probability:	Ω( D
���	u

)

Thus,	the	total	time	complexity	is	𝑂(𝑛Elog	𝑛).

To	factor	a	2048-bit	number,	we	need	roughly	2048E · log	2048	 ∼ 	10DD
operations.	If	we	assume	each	operation	takes	1	microsecond	(μs)	on	a
quantum	computer,	it	takes	only	one	day	to	factor	the	number.

Example	(RSA-2048)



52/74Hao Chung (鍾豪) Quantum Cryptanalysis

Shor Algorithm on Elliptic Curves
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Shor algorithm

Phase
Estimation Order-Finding Factoring

Given a integer 𝑁,
find a non-trivial
factor of 𝑁.

Given	𝑎 and	𝑁,	find	the	
smallest	positive integer	
𝑟 such	that	

𝑎� ≡ 1	𝑚𝑜𝑑	𝑁.

Given a unitary matrix 𝑈
and a vector |𝑣〉, find the
phase of eigenvalue 𝜃
such that

𝑈 𝑣 = 	𝑒@���|𝑣〉.
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Phase Estimation

Because unitary matrices preserve the length, so its eigenvalue
must have the form of 𝑒@���.

Given a unitary matrix 𝑈 and its eigenvector |𝑣〉, find the
phase of eigenvalue 𝜃 ∈ [0,1) such that

𝑈 𝑣 = 	𝑒@���|𝑣〉.

Definition (Phase Estimation)



55/74Hao Chung (鍾豪) Quantum Cryptanalysis

Phase Estimation

Given a unitary operator 𝑈 and an integer 𝑘. Let |𝜙⟩ be an eigenstate

of 𝑈.

Consider the following circuit:

If 𝑈 is a unitary matrix, we have

𝑈� 𝜙 = 	𝑒@���� 𝜙 .

U

|𝑘〉 |𝑘〉

|𝜙〉 𝑈�|𝜙〉
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Phase Estimation

If we make the first register in a superposed state:

Because	𝑈� 𝜙 = 𝑒@���� 𝜙 ,	we have

1
2�� H 𝑘 𝑒@���� 𝜙 	 =

@�]D

�L^

1
2�� H 𝑒@���� 𝑘

@�]D

�L^
𝜙 .

U

|0〉 1
2�� H |𝑘〉	

@�]D

�L^

|𝜙〉 𝑈�|𝜙〉

H
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Phase Estimation

If we make the first register in a superposed state:

Because	they	are	in	the	product	state	(1st and	2nd are	independent),	we	
can	just	focus	on	the	first	register.
We have

1
2�� H 𝑒@���� 𝑘

@�]D

�L^
𝜙 =

1
2�� H 𝑒@���� 𝑘

@�]D

�L^
⊗ 𝜙 .

U

|0〉 1
2�� H 𝑒@����|𝑘〉	

@�]D

�L^

|𝜙〉 |𝜙〉

H
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Phase	Estimation

Suppose	𝜃 happens	to	have	a	form	of	𝜃 = �
@�
, for	some	integer	𝑗 ∈

0,… , 2� − 1 .
Then,

1
2�� H 𝑒@����/@� 𝑘

@�]D

�L^
=

1
2�� H 𝜔�� 𝑘 = 𝜙� ,

@�]D

�L^

where	𝜔 = 𝑒@��/@�.

It	can	be	shown	that	{|𝜙^〉, … , |𝜙@�]D〉} forms	an	orthonormal	basis.

That	is,	

𝜙� 𝜙�¢ = i1, if	𝑗 = 𝑗£;
0, if	𝑗 ≠ 𝑗£.
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Phase	Estimation

There	is	a	unitary	matrix	𝐹 satisfies 𝐹 𝑗 = 𝜙� .

That	is,	the	𝑗¦§ column	of	𝐹 is	 𝜙� = D
@�� ∑ 𝜔�� 𝑘@�]D

�L^ .

Write	it	in	the	matrix	form,	we	have

𝐹 = 	
1
2��

1 1 1
1 𝜔 𝜔@
1 𝜔@ 𝜔F

⋯ 1
⋯ 𝜔@�]D
⋯ 𝜔@(@�]D)

⋮ ⋮ ⋮
1 𝜔@�]D 𝜔@(@�]D)

⋱ ⋮
⋯ 𝜔 @�]D ¨

,

which	is	exactly	the	discrete	Fourier	transform.

In quantum computing, we call it “quantum Fourier transform.”
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Phase Estimation

Thus,	if	we	apply	inverse	quantum	Fourier	transform	(𝐹]D) to	the	first	

register,	we	get	|𝑗〉.

If	we	measure	it,	we	get	𝑗 and	𝜃 = �
@�
is	our	desired	phase	estimation.

The	whole	circuit	for	phase	estimation	is

U

|0〉 |𝑗〉

|𝜙〉 |𝜙〉

H QFT+
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Phase Estimation

How about 𝜃 is not in the form of �
@�
?

It turns out that the state after QFT+ is

1
2�

H H 𝑒@��(��]��/@�)|𝑗⟩
@�]D

�L^

=
@�]D

�L^

H
1
2�

H 𝑒@���(�]�/@�)
@�]D

�L^

𝑗 .
@�]D

�L^

The probability of measuring 𝑗 is

𝑝� =
1
2�

H 𝑒@��� �] �
@�

@�]D

�L^

@

.
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Reduce	Order-Finding	to Phase	Estimation

To solve order-finding problem, we consider the following unitary

operator

𝑈b 𝑦 = 𝑎𝑦	 mod	𝑁 .

Let 𝑟 be the order of 𝑎 in ℤc∗ . Then the following vector is an eigenvector

of 𝑈b

𝜓^ = 	
1
𝑟�

1 + 𝑎 + 𝑎@ +⋯+ |𝑎�]D⟩ ,

because 𝑈b 𝜓^ = D
��
𝑎 + 𝑎@ +⋯+ 𝑎�]D + |𝑎�⟩

																													= D
��
𝑎 + 𝑎@ +⋯+ 𝑎�]D + |1⟩

																													= 𝜓^ .
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Reduce	Order-Finding	to	Phase	Estimation

Let 𝜔� = 𝑒@��/�.

In general, the eigenvectors of 𝑈b have the form of

𝜓¦ = 	
1
𝑟�

1 + 𝜔�]¦ 𝑎 + 𝜔�]@¦ 𝑎@ + ⋯+ 𝜔�
]¦(�]D)|𝑎�]D⟩ ,

since

𝑈b 𝜓¦ = 𝜔�¦ 𝜓¦ .

Then, phase estimation can help us find

𝜃 =
𝑡
𝑟
.
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Reduce	Order-Finding	to	Phase	Estimation

𝜓¦ = 	
1
𝑟�

1 + 𝜔�]¦ 𝑎 + 𝜔�]@¦ 𝑎@ + ⋯+ 𝜔�
]¦(�]D)|𝑎�]D⟩

How do we prepare |𝜓¦⟩ if we do not know 𝑟?
Fortunately, we have

1
𝑟�
H |𝜓¦⟩
�]D

�L^

=
1
𝑟
HH𝜔�]�® 𝑎® = 𝑎^ = 1 .

�]D

®L^

�]D

�L^

	𝑈b

|0〉 |𝑗〉

|1〉 |1〉

H QFT+
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Reduce	Order-Finding	to Phase	Estimation

How do we find 𝑟 if we only know
𝑗
2�
≈
𝑡
𝑟
?

Fortunately, we can do it by continued fraction, because the following
theorem.

We know We do not know

Suppose ¦
�
is a rational number such that �

@�
− ¦

�
≤ D

@�¨
. Then ¦

�
is a

convergent of the continued fraction for �
@�
.

Theorem
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Continued Fraction

The continued fraction of a number 𝑠 is

𝑠 = 𝑎^ +
1

𝑎D +
1

𝑎@ +
1

𝑎E +
1

⋯+ 1
𝑎c

.

In this case, we can express arbitrary number 𝑠 as a sequence of

positive integers 𝑎^, 𝑎D,⋯ , 𝑎c .
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Continued Fraction

First, we split ED
DE

into integer part and fraction part,
31
13

= 2 +
5
13
.

Then, inverse the fraction part and get
31
13

= 2 +
1
13
5
= 2 +

1

2 + 35
.

Similarly,
31
13

= 2 +
1

2 + 1
5
3

= 2 +
1

2 + 1
1 + 1

1 + 12

.

Thus, 2,2,1,1,2 is the continued fraction expansion of ED
DE
.

Example (continued fraction of ED DE⁄ )
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Continued Fraction

The 𝑖¦§ convergent of a continued fraction 𝑎^, 𝑎D,⋯ , 𝑎c is the

number that 𝑎^, 𝑎D,⋯ , 𝑎� represents.

Let 𝑝� denote the 𝑖¦§ convergent of 𝑎^, 𝑎D,⋯ , 𝑎c .

Then,

𝑝^ = 𝑎^.

𝑝D = 𝑎^ +
D
b|
.

𝑝@ = 𝑎^ +
D

b|³
|
´¨

.

⋮
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Example

Assume	we	want	to	factor	15.	We	choose	𝑎	 = 	7.	The	first	step	is	to	
prepare	a	superposition	state	

𝜓D =
1
4
H 𝑥 |0⟩
Dµ

IL^

.

Next, we compute the modular exponential and get

𝜓@ =
1
4

0 1 + 1 7 +⋯+ |15⟩|13⟩

=
1
4
{ 0 + 4 + 8 + 12 1

Example (Shor Algorithm for Factoring)

+ 1 + 5 + 9 + 13 7
+ 2 + 6 + 10 + 14 4

+ 3 + 7 + 11 + 15 13 }.
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Example

The quantum Fourier transform yields
1
4

0 + 4 + 8 + 12 1

If we measure the first register, we can get 0,4,8 or 12 with the same
probability.

If the measurement result is 4 or 12, we can get the correct order by
condinued fraction. 	

Example (Shor Algorithm for Factoring)

+ 0 + 𝑖 4 − 8 − 𝑖 12 7

+ 0 − 4 + 8 − 12 4

+ 0 − 𝑖 4 − 8 + 𝑖 12 13 }
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How many qubits do we need?

Note that we do not know 𝑟 in advance.

However, 𝑟 must be smaller than 𝑁, the integer we want to factor. So
𝑗
2�
−
𝑡
𝑟
≤

1
2𝑟@

≤
1
2𝑁@ .

If �
@�
can accurate to log 2𝑁@ bits, the theorem applies.

Suppose ¦
�
is a rational number such that �

@�
− ¦

�
≤ D

@�¨
. Then ¦

�
is a

convergent of the continued fraction for �
@�
.

Theorem
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How many qubits do we need?

Assume	we	want	to	factor	a	𝑛-bit	number	𝑁.

The 1st register need log 2𝑁@ = 2𝑛 + 1 qubits.

The	2nd register	needs	to	compute	𝑎I	mod	𝑁,	so	it	needs	𝑛 qubits	to	

save	𝑎I.

Because	the	1st register	needs	2𝑛 qubits	and	the	2nd register	needs	𝑛

qubits,	we	need	𝟑𝒏 qubits	in	total.
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Summary	

Assume	we	want	to	factor	a	𝑛-bit	number	𝑁.

Time Complexity 𝑂(𝑛E𝑙𝑜𝑔	𝑛)
Number	of	qubits	 3𝑛
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Suggested Reading

• Quantum Computing: John Watrous’	Lecture	Notes

• Shor and Grover Algorithm: John	Watrous’	Lecture	Notes

• Suggested reading for quantum key distribution (QKD):

1. 我的科普文章

(https://medium.com/@chunghaoblog/qkd-c6b82a9b04e0)

2. 科普影片 (https://youtu.be/6H_9l9N3IXU)

3. 量子計算：Thomas Vidick’s lecture note


