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In DEXON, we use Byzantine agreement (BA) to help all the miners agree on
who can issue the next block.

Byzantine
Agreement

It would be great that if we can randomly draw one of those nodes.

In DEXON, we use verifiable random function (VRF) to help us.
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Can we verify the authentication of the generation of the random number?




Verifiable Random Function

VRF is a function that generates a random value, where the computation

can be verified.

[ VRF ,(x) ] (y, ) i [Veripk(y, ﬂ,X)j—» yes/no

Uniqueness

Given a secret key sk and a seed x, a unique output y is generated.

Verification
Given a public key pk, a seed x and a proof r,
only one value y can pass the verification.

Pseudorandomness

The output y should look random.




Verifiable Random Function

Remind that the digital signature has the properties:

1. only the user with the secret key can generate a valid signature
2. everyone with the public key can verify the signature

3. without the secret key, the signature should be unpredictable

In DEXON’s BA, the VRF is designed as

CRS prevents the users “fit” the
secret key beforehand. an unpredictable seed

R, — Hash(Sig,(m))

make the value pseudorandom
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(n,t)-threshold signature

(sky, vk;)

Everyone can verify o, by vk,

o, = ShareSign(sk,, m)

Everyone can verify X by pk

o, = ShareSign(sk,, m)
\ threshold

signature

2

o, = ShareSign(sk,, m) /

Suppose we use a (5,3)-threshold signature
Every three signature shares can combine a threshold signature
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(n,t)-Secret Sharing

A dealer distribute secret shares among n parties. ’

Any t parties can recover the ongm& //




(n,t)-Secret Sharing

An (t-1)-degree polynomial has t parameters:

AX)=ay+ax+ - +a,_x"".

Any t disjoint points can uniquely determine a (t-1)-degree polynomial.

y=day+ax y = ag+ a;x + a,x*




Take (5,3)-secret sharing for example.

The dealer choose a 2-degree polynomial:

(n,t)-Secret Sharing

Alx) =ag+ ax + ax~-.

A(1) A(2) A(3) A(4) A(5)

A(4) — ao + 4611 + 16612
A(S) = ay+ Sa; + 25a, \ //

Any 3 parties can recover the original secrets.

The secret is hided in Uy .

A(l) — a0+a1 +a2




Discrete Logarithm

Give a group G and a generator ¢.

y=g"

Given g and y, it is difficult to find an x satisfies the equation.

This problem is called discrete logarithm problem.

For example, which x satisfies

5 =3 (mod 7)




BLS Signature

Pairing
If a function ¢ is pairing, it satisfies

e(gica g2) — e(gla géc)
Parameter Setup

Give a hash function Hash, a pairing ¢, and a group generator g.
Let the secret key be x. The public key iIs g*.

Signing
Given a message m, the signer computes i = Hash(m).

The signature s is
L c=h".
Verification

The verifier check whether

e(o,g) = e(h, g")



(n,t)-threshold signature

Suppose an honest dealer prepare a (t-1)-degree polynomial:

AX)=ay+ax+ - +a,_x"".

The dealer distribute A(i) to i-th user.

Signing
The i1-th user computes
(SK;, Vki) h = Hash(m)
— 1,5k
] 0= h*"
Verification
(A(l), gA(l)) The verifier checks whether

e(o;, &) = e(h, vk,)




(n,t)-threshold signature

Suppose we have t signature shares.

;= hsk- — hA(i)
— LSske — A
oy = h o h t shares

— Lsky — 1, AG")
o= h""=h
We can combine them into a threshold signature:
> = hiO,
ho . hb — ha+b
(ha)b — hab

It’s exactly what we do in secret sharing, except that now we are in exponent.




(n,t)-threshold signature

Suppose an honest dealer prepare a (t-1)-degree polynomial:

AX)=ay+ax+ - +a,_x"".

The dealer distribute A(i) to i-th user.

The dealer also broadcast pk — gA(O) as the public key.

Notice that the valid signature has a form

s = hAO

Everyone can verify the threshold signature by checking:

e(Z, g) = e(h, pk).




However, in blockchain, we don’t have an honest dealer.




Outline

1. Total Ordering
2. \lerifiable Random Function (VRF)
3. Threshold Signature

4. Distributed Key Generation (DKG)




(n,t)-threshold signature

(sky, vk;)

Everyone can verify o, by vk,

o, = ShareSign(sk,, m)

Everyone can verify X by pk

o, = ShareSign(sk,, m)
\ threshold

signature

2

o, = ShareSign(sk,, m) /

Suppose we use a (5,3)-threshold signature
Every three signature shares can combine a threshold signature




Distributed Key Generation

A(1) A(2)

\g/

A(S) | A(3)

A(4)




Distributed Key Generation

To remove the honest dealer, each user generates the polynomial individually.

The first user generates a (t-1)-degree polynomial:

Fi(x) =fio+fipx+ o +fi o)




Distributed Key Generation

F, F,
N S
ﬂ A(x) = ) Fix)
Fs

T TN

I3

Conceptually, the underlining
polynomial is the sum of each
polynomial.

Fy




Distributed Key Generation

Fi(2)

A(2) = ZF(Z)

=1
/ \”3@
F,2)

Then we have

sk, = A(2)
A(2)

vk, =
F4 » =8




Distributed Key Generation

gl 2 2 gho
F F,

the constant coefficient 1
A(O) — H gf 0
gfsoﬂ z 1 \ ﬂ gf30

Recall that the public key is g4 Then we have
2 gh

ph=g@ I

Fy
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However, if any user equivocates, then the scheme is broken!

Fi(2)

K

How can we resist such Byzantine behavior?




Distributed Key Generation

Suppose the first user generates a (t-1)-degree polynomial:

Fi(x) =fig+fix+ - fl,t—lxt_1'

The first user broadcasts the commitments of all the coefficients.

2 Lgfl,o, gfl,l, es, gfl,t—l
Fl

Other users can check their received value by the commitments.
Take 2nd user for example, he/she just checks

gFl(z) ; gfl,O X (gfl,l)2 X (gf1,2)4 X eee X (gfl,t—l)zt_l




Distributed Key Generation

For the i-th user:

1. Generates a (t-1)-degree polynomial randomly
F@) = fo+fx+ o+ fo

2. Broadcast the commitments of the coefficients
gfl,o, gfl,l, oo, gfl,t—l .

3. Send F.(J) to the j-th user privately

4. Check received messages according to the commitments

5. Compute the keys as follow: sk, = ) F(i)
JEQ
vk, = gk

pk =] ] g%

JEQ




(n,t)-threshold signature

(sky, vk;)

Everyone can verify o, by vk,
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