Cryptographic Primitives
in DEXON

Po-Chun Kuo and Hao Chung
DEXON Research
2019.1

DEXON Reading Group

1. Overview of DEXON
2. Cryptographic Primitive in DEXON
3. DEXON Byzantine Agreement

4. DEXON Consensus

18§59 Po-Chun Kuo

| Chief Scientist
e B.S., M.S., PhD program in NTUEE
3 * Visiting Researcher in TU Darmstadt in Germany, Kyushu

e B.S.in NTU physics, M.S. in NTUEE

University in Japan and University of Haifa, Israel

* Publish 14 papers, 20+ invited talk

e TJeaching Assistant 10+ courses in NTU

f#5>= Hao Chung

Blockchain Researcher

* Research in quantum cryptography

* Lecturer and teaching assistant of Crypto camp in sinica

Outline

1. Verifiable Random Function (VRF)
2. Threshold Signature

3. Distributed Key Generation (DKG)

In DEXON, we use Byzantine agreement (BA) to help all the miners agree on
who can issue the next block.

Byzantine
Agreement

It would be great that if we can randomly draw one of those nodes.

In DEXON, we use verifiable random function (VRF) to help us.

TOUR OF ACCOUNTING ARE

YOU

SURE
THAT'S
RANDOM?

THAT'S THE
PROBLEM
WITH RAN-
DOMNESS:
YOU CAN
NEVER BE
SURE.

NINE NINE
NINE NINE
NINE NINE

OVER HERE
WE HAVE OUR
RANDOM NUMBER

GENERATOR.

,o(,\s[o,o 2001 United Feature Syndicate, Inc.

www.dilbert.com scottadams@aol.com

Can we verify the authentication of the generation of the random number?

Verifiable Random Function

VRF is a function that generates a random value, where the computation

can be verified.

[VRF ,(x)] (y,) i [Veripk(y, ﬂ,X)j—» yes/no

Uniqueness

Given a secret key sk and a seed x, a unique output y is generated.

Verification
Given a public key pk, a seed x and a proof r,
only one value y can pass the verification.

Pseudorandomness

The output y should look random.

Verifiable Random Function

Remind that the digital signature has the properties:

1. only the user with the secret key can generate a valid signature
2. everyone with the public key can verify the signature

3. without the secret key, the signature should be unpredictable

In DEXON’s BA, the VRF is designed as

CRS prevents the users “fit” the
secret key beforehand. an unpredictable seed

R, — Hash(Sig,(m))

make the value pseudorandom

Outline

1. Total Ordering
2. \lerifiable Random Function (VRF)
3. Threshold Signature

4. Distributed Key Generation (DKG)

(n,t)-threshold signature

(sky, vk;)

Everyone can verify o, by vk,

o, = ShareSign(sk,, m)

Everyone can verify X by pk

o, = ShareSign(sk,, m)
\ threshold

signature

2

o, = ShareSign(sk,, m) /

Suppose we use a (5,3)-threshold signature
Every three signature shares can combine a threshold signature

¥ DEXON

(n,t)-Secret Sharing

A dealer distribute secret shares among n parties. ’

Any t parties can recover the ongm& //

(n,t)-Secret Sharing

An (t-1)-degree polynomial has t parameters:

AX)=ay+ax+ - +a,_x"".

Any t disjoint points can uniquely determine a (t-1)-degree polynomial.

y=day+ax y = ag+ a;x + a,x*

Take (5,3)-secret sharing for example.

The dealer choose a 2-degree polynomial:

(n,t)-Secret Sharing

Alx) =ag+ ax + ax~-.

A(1) A(2) A(3) A(4) A(5)

A(4) — ao + 4611 + 16612
A(S) = ay+ Sa; + 25a, \ //

Any 3 parties can recover the original secrets.

The secret is hided in Uy .

A(l) — a0+a1 +a2

Discrete Logarithm

Give a group G and a generator ¢.

y=g"

Given g and y, it is difficult to find an x satisfies the equation.

This problem is called discrete logarithm problem.

For example, which x satisfies

5 =3 (mod 7)

BLS Signature

Pairing
If a function ¢ is pairing, it satisfies

e(gica g2) — e(gla géc)
Parameter Setup

Give a hash function Hash, a pairing ¢, and a group generator g.
Let the secret key be x. The public key iIs g*.

Signing
Given a message m, the signer computes i = Hash(m).

The signature s is
L c=h".
Verification

The verifier check whether

e(o,g) = e(h, g")

(n,t)-threshold signature

Suppose an honest dealer prepare a (t-1)-degree polynomial:

AX)=ay+ax+ - +a,_x"".

The dealer distribute A(i) to i-th user.

Signing
The i1-th user computes
(SK;, Vki) h = Hash(m)
— 1,5k
] 0= h*"
Verification
(A(l), gA(l)) The verifier checks whether

e(o;, &) = e(h, vk,)

(n,t)-threshold signature

Suppose we have t signature shares.

;= hsk- — hA(i)
— LSske — A
oy = h o h t shares

— Lsky — 1, AG")
o= h""=h
We can combine them into a threshold signature:
> = hiO,
ho . hb — ha+b
(ha)b — hab

It’s exactly what we do in secret sharing, except that now we are in exponent.

(n,t)-threshold signature

Suppose an honest dealer prepare a (t-1)-degree polynomial:

AX)=ay+ax+ - +a,_x"".

The dealer distribute A(i) to i-th user.

The dealer also broadcast pk — gA(O) as the public key.

Notice that the valid signature has a form

s = hAO

Everyone can verify the threshold signature by checking:

e(Z, g) = e(h, pk).

However, in blockchain, we don’t have an honest dealer.

Outline

1. Total Ordering
2. \lerifiable Random Function (VRF)
3. Threshold Signature

4. Distributed Key Generation (DKG)

(n,t)-threshold signature

(sky, vk;)

Everyone can verify o, by vk,

o, = ShareSign(sk,, m)

Everyone can verify X by pk

o, = ShareSign(sk,, m)
\ threshold

signature

2

o, = ShareSign(sk,, m) /

Suppose we use a (5,3)-threshold signature
Every three signature shares can combine a threshold signature

Distributed Key Generation

A(1) A(2)

\g/

A(S) | A(3)

A(4)

Distributed Key Generation

To remove the honest dealer, each user generates the polynomial individually.

The first user generates a (t-1)-degree polynomial:

Fi(x) =fio+fipx+ o +fi o)

Distributed Key Generation

F, F,
N S
ﬂ A(x) =) Fix)
Fs

T TN

I3

Conceptually, the underlining
polynomial is the sum of each
polynomial.

Fy

Distributed Key Generation

Fi(2)

A(2) = ZF(Z)

=1
/ \”3@
F,2)

Then we have

sk, = A(2)
A(2)

vk, =
F4 » =8

Distributed Key Generation

gl 2 2 gho
F F,

the constant coefficient 1
A(O) — H gf 0
gfsoﬂ z 1 \ ﬂ gf30

Recall that the public key is g4 Then we have
2 gh

ph=g@ I

Fy

¥ DEXON

However, if any user equivocates, then the scheme is broken!

Fi(2)

K

How can we resist such Byzantine behavior?

Distributed Key Generation

Suppose the first user generates a (t-1)-degree polynomial:

Fi(x) =fig+fix+ - fl,t—lxt_1'

The first user broadcasts the commitments of all the coefficients.

2 Lgfl,o, gfl,l, es, gfl,t—l
Fl

Other users can check their received value by the commitments.
Take 2nd user for example, he/she just checks

gFl(z) ; gfl,O X (gfl,l)2 X (gf1,2)4 X eee X (gfl,t—l)zt_l

Distributed Key Generation

For the i-th user:

1. Generates a (t-1)-degree polynomial randomly
F@) = fo+fx+ o+ fo

2. Broadcast the commitments of the coefficients
gfl,o, gfl,l, oo, gfl,t—l .

3. Send F.(J) to the j-th user privately

4. Check received messages according to the commitments

5. Compute the keys as follow: sk, =) F(i)
JEQ
vk, = gk

pk =]] g%

JEQ

(n,t)-threshold signature

(sky, vk;)

Everyone can verify o, by vk,

o, = ShareSign(sk,, m)

Everyone can verify X by pk

o, = ShareSign(sk,, m)
\ threshold

signature

2

o, = ShareSign(sk,, m) /

Suppose we use a (5,3)-threshold signature
Every three signature shares can combine a threshold signature

