
1/25Hao Chung (鍾豪) Computational Complexity

Hao Chung (鍾豪)

July 18, 2019

Computational Complexity

ChungHao

2/25Hao Chung (鍾豪) Computational Complexity

Self Introduction

台大電機碩士

前 DEXON foundation 區塊鏈研究員

2016 暑期密碼學課程學生

2017 暑期密碼學助教

研究興趣：quantum cryptography, blockchain

3/25Hao Chung (鍾豪) Computational Complexity

Outline

1. Big-Oh notation

2. Polynomial-Time Reduction

3. P v.s. NP

4/25Hao Chung (鍾豪) Computational Complexity

How to Compare Algorithms

Suppose we want to compute a function 𝑓(𝑛)

• Algorithm 1 runs in 100,000𝑛 seconds

• Algorithm 2 runs in 𝑛(seconds

Which algorithm is better?

• Algorithm 2 runs faster if 𝑛 < 100,000	

• Algorithm 1 runs faster if 𝑛 > 100,000

The ratio of running times goes to infinity

5/25Hao Chung (鍾豪) Computational Complexity

How to Compare Algorithms

Suppose we want to compute a function 𝑔(𝑛)

• Algorithm 1 runs in 20𝑛 seconds

• Algorithm 2 runs in 10𝑛 + 30	seconds

Which algorithm is better?

• Algorithm 2 runs faster when 𝑛 > 3

• However, it is only twice as fast when 𝑛 → ∞

6/25Hao Chung (鍾豪) Computational Complexity

Big-Oh

In human language, 𝑔 𝑛 ∈ 𝑂 𝑓 𝑛 if

1. there exists a constant 𝑐 and a threshold 𝑛5 such that

2. 𝑔 𝑛 ≤ 𝑐 · 𝑓 𝑛 for all 𝑛 larger than 𝑛5

Remark: Sometimes we abuse the notation and write

𝑔(𝑛) 	= 	𝑂 𝑓 𝑛 ; however, you should aware that 𝑂 𝑓 𝑛 is a set.

Let	𝑓 𝑛 and	𝑔 𝑛 be	functions	from	ℝ; to ℝ;.	Then,	

𝑂 𝑓 𝑛 = 𝑔 𝑛 : ∃𝑐, 𝑛5	such	that	0 ≤ 𝑔 𝑛 ≤ 𝑐 · 𝑓 𝑛 	for	all	𝑛 > 𝑛5

Definition (Big-Oh)

7/25Hao Chung (鍾豪) Computational Complexity

Big-Oh Examples

Proof:

Let 𝑐 = 1, 𝑛5 = 3. Then,

If 𝑛 ≥ 𝑛5, then 𝑓 𝑛 = 10𝑛 + 30 ≤ 20𝑛 = 𝑐𝑔(𝑛).	

Let 𝑐 = 2, 𝑛5 = 1. Then,

If 𝑛 ≥ 𝑛5, then 𝑔 𝑛 = 20𝑛 ≤ 2(10𝑛 + 30) = 𝑐𝑓(𝑛).	

Let 𝑓 𝑛 = 10𝑛 + 30 and 𝑔 𝑛 = 20𝑛.

Prove that 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑔 𝑛 ∈ 𝑂 𝑓 𝑛 .

Example

8/25Hao Chung (鍾豪) Computational Complexity

Big-Oh Examples

Let 𝑓 𝑛 = 100,000𝑛 and 𝑔 𝑛 = 𝑛(.

Prove that 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 .

Example

9/25Hao Chung (鍾豪) Computational Complexity

Big-Oh Examples

Let 𝑓 𝑛 = 𝑛I + 3𝑛 + 500.

Prove that 𝑓 𝑛 ∈ 𝑂 𝑛I .

Example

10/25Hao Chung (鍾豪) Computational Complexity

Properties of Big-Oh

Big Oh allows us to ignore constant factors:

• For any constant 𝑐, we have 𝑐 · 𝑓 𝑛 ∈ 𝑂 𝑓 𝑛 .

• For example, addition costs 1 iteration and division costs 32
iteration on x86 CPU .

But whether counting division as an elementary operation
doesn’t affect the time complexity.

11/25Hao Chung (鍾豪) Computational Complexity

Properties of Big-Oh

Big Oh allows us to ignore lower order terms:

• If 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 , then 𝑔 𝑛 + 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 .	

• 𝑂 𝑛I + 3𝑛(+ 1 = 𝑂 𝑛I .	

• If there are many parts in an algorithm, the most expensive
part will dominate.

12/25Hao Chung (鍾豪) Computational Complexity

Big-Omega

In human language, 𝑔 𝑛 ∈ Ω 𝑓 𝑛 if

1. there exists a constant 𝑐 and a threshold 𝑛5 such that

2. 𝑔 𝑛 ≥ 𝑐 · 𝑓 𝑛 for all 𝑛 larger than 𝑛5

Let	𝑓 𝑛 and	𝑔 𝑛 be	functions	from	ℝ; to ℝ;.	Then,	

Ω 𝑓 𝑛 = 𝑔 𝑛 : ∃𝑐, 𝑛5	such	that	𝑔 𝑛 ≥ 𝑐 · 𝑓 𝑛 ≥ 0	for	all	𝑛 > 𝑛5

Definition (Big-Omega)

13/25Hao Chung (鍾豪) Computational Complexity

Big-Theta

In human language, 𝑔 𝑛 ∈ Θ 𝑓 𝑛 if

1. there exists two constants 𝑐M, 𝑐(and a threshold 𝑛5 such that

2. 𝑐M ⋅ 𝑓 𝑛 ≤ 𝑔 𝑛 ≤ 𝑐(· 𝑓 𝑛 	for all 𝑛 larger than 𝑛5

Let	𝑓 𝑛 and	𝑔 𝑛 be	functions	from	ℝ; to ℝ;.	Then,	

Θ 𝑓 𝑛 = 𝑔 𝑛 : ∃𝑐M, 𝑐(, 𝑛5	such	that	
0 ≤ 𝑐M ⋅ 𝑓 𝑛 ≤ 𝑔 𝑛 ≤ 𝑐(· 𝑓 𝑛 	for	all	𝑛 > 𝑛5

Definition (Big-Theta)

14/25Hao Chung (鍾豪) Computational Complexity

Examples

Let 𝑓 𝑛 = 𝑛I + 3𝑛 + 500.

Prove that 𝑓 𝑛 ∈ Ω 𝑛O log 𝑛 and 𝑓 𝑛 ∈ Θ 𝑛I .

Example

Prove that log 𝑛 ∈ 𝑂 𝑛Q , for all 𝑘 > 0.

Example

Prove that 𝑛Q ∈ 𝑂 𝑛STU V , for all 𝑘 > 0.

Example

Let 𝑓 𝑛 = V
STU V

and 𝑔 𝑛 = 𝑛MWX for some 𝛿 ∈ 0,1 .

Prove that 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 or 𝑔 𝑛 ∈ 𝑂 𝑓 𝑛 .

Example

15/25Hao Chung (鍾豪) Computational Complexity

Outline

1. Big-Oh notation

2. Polynomial-Time Reduction

3. P v.s. NP

16/25Hao Chung (鍾豪) Computational Complexity

Probabilistic Polynomial-Time (PPT)

In cryptography, we usually define the power of adversary as a
probabilistic polynomial-time (PPT) algorithm.

An algorithm is polynomial-time if its running time is 𝑂 𝑛Q for
some 𝑘.

An algorithm is probabilistic (or randomized) if we allow the
algorithm to “toss a coin” at each step.

1. randomly choose 𝑎 ∈ 2,⋯ ,𝑁 − 1

2. if 𝑎^WM ≠ 1, output	𝑁	is a composite

3. run step 1. and step 2. many times

4. if none of 𝑎^WM ≠ 1	in previous steps, output 𝑁 is likely a prime

Example (Primality-Test)

17/25Hao Chung (鍾豪) Computational Complexity

Polynomial-Time Reduction

Problem 𝒜 is polynomial-time reducible to problem ℬ if

1. given an oracle of ℬ

2. 𝒜 can be solved in polynomial-time

We write “𝒜 ≤b ℬ” to denote that 𝒜 is polynomial-time reducible
to ℬ.

In this case, we say that problem
𝒜 is no harder than problem ℬ.

18/25Hao Chung (鍾豪) Computational Complexity

RSA Encryption

19/25Hao Chung (鍾豪) Computational Complexity

RSA Problem

Given 𝑁, 𝑒, 𝑐 such that 𝑐 ∈ ℤ^ and gcd 𝑒, 𝜙 𝑁 = 1,

find 𝑚 such that 𝑚h ≡ 𝑐	 𝑚𝑜𝑑	𝑁 .

Definition (RSA problem)

Suppose we have a factoring oracle 𝒪.

Then, we construct a RSA solver as follow.

1. query 𝒪 and get 𝑁 = 𝑝 ⋅ 𝑞

2. compute 𝜙 𝑁 = 𝑝 − 1 𝑞 − 1

3. compute 𝑑 = 𝑒WM	 𝑚𝑜𝑑	𝜙 𝑁

4. compute 𝑚 = 𝑐o	 𝑚𝑜𝑑	𝑁

Hence, we can say that RSA problem ≤b factoring problem

20/25Hao Chung (鍾豪) Computational Complexity

Reduction in Security Proof

In cryptography, we often show the security of a scheme E by

assumption
(known difficulty) ≤b breaking E

21/25Hao Chung (鍾豪) Computational Complexity

Outline

1. Big-Oh notation

2. Polynomial-Time Reduction

3. P v.s. NP

22/25Hao Chung (鍾豪) Computational Complexity

P and NP

P is the set of problems that can be solved in polynomial time.

Definition (P) (informal)

NP is the set of problems that can be checked in polynomial time
given a solution.

Definition (NP) (informal)

Strictly speaking, P and NP only include decisional problems.

23/25Hao Chung (鍾豪) Computational Complexity

Is primality test in P?

In 2002, Manindra Agrawal, Neeraj Kayal and Nitin Saxena finally
showed that Primes problem is in P.

If we can try the division up to 𝑁� , why Primes problem ∈ P
doesn’t hold trivially?

Given an integer 𝑁, decide whether 𝑁 is a prime or not.

Definition (Primes problem)

Key: the running time is counted in input size.

24/25Hao Chung (鍾豪) Computational Complexity

P and NP

P is the set of decisional problems that can be solved in time
𝑂 𝑝 𝑛 for some polynomial 𝑝(𝑛) in the input size 𝑛.

Definition (P)

NP is the set of decisional problems that can be checked in time
𝑂 𝑝 𝑛 for some polynomial 𝑝(𝑛) in the input size 𝑛 given a
solution.

Definition (NP)

25/25Hao Chung (鍾豪) Computational Complexity

