Computational Complexity

Hao Chung (鍾豪)

Self Introduction

台大電機碩士

前 DEXON foundation 區塊鏈研究員

- 2016 暑期密碼學課程學生
- 2017 暑期密碼學助教

研究興趣: quantum cryptography, blockchain

- 1. Big-Oh notation
- 2. Polynomial-Time Reduction
- 3. P v.s. NP

Suppose we want to compute a function f(n)

- Algorithm 1 runs in 100,000*n* seconds
- Algorithm 2 runs in n^2 seconds

Which algorithm is better?

- Algorithm 2 runs faster if n < 100,000
- Algorithm 1 runs faster if n > 100,000

The ratio of running times goes to infinity

How to Compare Algorithms

Suppose we want to compute a function g(n)

- Algorithm 1 runs in 20*n* seconds
- Algorithm 2 runs in 10n + 30 seconds

Which algorithm is better?

- Algorithm 2 runs faster when n > 3
- However, it is only twice as fast when $n \to \infty$

Big-Oh

Definition (Big-Oh)

Let f(n) and g(n) be functions from \mathbb{R}^+ to \mathbb{R}^+ . Then,

 $O(f(n)) = \{g(n): \exists c, n_0 \text{ such that } 0 \le g(n) \le c \cdot f(n) \text{ for all } n > n_0\}$

In human language, $g(n) \in O(f(n))$ if

- 1. there exists a constant c and a threshold n_0 such that
- 2. $g(n) \leq c \cdot f(n)$ for all n larger than n_0

Remark: Sometimes we abuse the notation and write g(n) = O(f(n)); however, you should aware that O(f(n)) is a set.

Big-Oh Examples

Example

Let f(n) = 10n + 30 and g(n) = 20n.

Prove that $f(n) \in O(g(n))$ and $g(n) \in O(f(n))$.

Proof:

Let $c = 1, n_0 = 3$. Then,

If $n \ge n_0$, then $f(n) = 10n + 30 \le 20n = cg(n)$.

Let $c = 2, n_0 = 1$. Then,

If $n \ge n_0$, then $g(n) = 20n \le 2(10n + 30) = cf(n)$.

Example

Let f(n) = 100,000n and $g(n) = n^2$. Prove that $f(n) \in O(g(n))$.

Example

Let $f(n) = n^4 + 3n + 500$. Prove that $f(n) \in O(n^4)$.

Big Oh allows us to ignore constant factors:

- For any constant c, we have $c \cdot f(n) \in O(f(n))$.
- For example, addition costs 1 iteration and division costs 32 iteration on x86 CPU .

But whether counting division as an elementary operation doesn't affect the time complexity.

Properties of Big-Oh

Big Oh allows us to ignore lower order terms:

• If $f(n) \in O(g(n))$, then $g(n) + f(n) \in O(g(n))$.

• $O(n^4 + 3n^2 + 1) = O(n^4).$

• If there are many parts in an algorithm, the most expensive part will dominate.

Big-Omega

Definition (Big-Omega)

Let f(n) and g(n) be functions from \mathbb{R}^+ to \mathbb{R}^+ . Then,

 $\Omega(f(n)) = \{g(n): \exists c, n_0 \text{ such that } g(n) \ge c \cdot f(n) \ge 0 \text{ for all } n > n_0\}$

In human language, $g(n) \in \Omega(f(n))$ if

- 1. there exists a constant c and a threshold n_0 such that
- 2. $g(n) \ge c \cdot f(n)$ for all n larger than n_0

Big-Theta

Definition (Big-Theta)

Let f(n) and g(n) be functions from \mathbb{R}^+ to \mathbb{R}^+ . Then,

$$\Theta(f(n)) = \begin{cases} g(n) : \exists c_1, c_2, n_0 \text{ such that} \\ 0 \le c_1 \cdot f(n) \le g(n) \le c_2 \cdot f(n) \text{ for all } n > n_0 \end{cases}$$

In human language, $g(n) \in \Theta(f(n))$ if

- 1. there exists two constants c_1, c_2 and a threshold n_0 such that
- 2. $c_1 \cdot f(n) \le g(n) \le c_2 \cdot f(n)$ for all *n* larger than n_0

Examples

Example

Let $f(n) = n^4 + 3n + 500$.

```
Prove that f(n) \in \Omega(n^3 \log n) and f(n) \in \Theta(n^4).
```

Example

Prove that
$$\log n \in O(n^k)$$
, for all $k > 0$.

Example

Prove that
$$n^k \in O(n^{\log n})$$
, for all $k > 0$.

Example

Let
$$f(n) = \frac{n}{\log n}$$
 and $g(n) = n^{1-\delta}$ for some $\delta \in (0,1)$.

Prove that $f(n) \in O(g(n))$ or $g(n) \in O(f(n))$.

Hao Chung (鍾豪)

- 1. Big-Oh notation
- 2. Polynomial-Time Reduction
- 3. P v.s. NP

Probabilistic Polynomial-Time (PPT)

In cryptography, we usually define the power of adversary as a probabilistic polynomial-time (PPT) algorithm.

An algorithm is polynomial-time if its running time is $O(n^k)$ for some k.

An algorithm is probabilistic (or randomized) if we allow the algorithm to "toss a coin" at each step.

Example (Primality-Test)

- 1. randomly choose $a \in \{2, \dots, N-1\}$
- 2. if $a^{N-1} \neq 1$, output *N* is a composite
- 3. run step 1. and step 2. many times
- 4. if none of $a^{N-1} \neq 1$ in previous steps, output N is likely a prime

Polynomial-Time Reduction

Problem \mathcal{A} is polynomial-time reducible to problem \mathcal{B} if

- 1. given an oracle of \mathcal{B}
- 2. \mathcal{A} can be solved in polynomial-time

We write " $\mathcal{A} \leq_p \mathcal{B}$ " to denote that \mathcal{A} is polynomial-time reducible to \mathcal{B} .

In this case, we say that problem \mathcal{A} is no harder than problem \mathcal{B} .

RSA Encryption

ALICE

Message x = 4

BOB

1. Choose p = 3 and q = 11

2. Compute
$$n = p * q = 33$$

3.
$$\Phi(n) = (3-1)^*(11-1) = 20$$

4. Choose *e* = 3

$$K_{pub} = (33,3)$$
 5. $d \equiv e^{-1} \equiv 7 \mod 20$

 $y = x^e \equiv 4^3 \equiv 31 \mod 33$

y = 31

 $y^d = 31^7 \equiv 4 = x \mod 33$

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Hao Chung (鍾豪)

RSA Problem

Definition (RSA problem)

Given *N*, *e*, *c* such that $c \in \mathbb{Z}_N$ and $gcd(e, \phi(N)) = 1$, find *m* such that $m^e \equiv c \pmod{N}$.

Suppose we have a factoring oracle \mathcal{O} .

Then, we construct a RSA solver as follow.

- 1. query \mathcal{O} and get $N = p \cdot q$
- 2. compute $\phi(N) = (p-1)(q-1)$
- 3. compute $d = e^{-1} (mod \phi(N))$
- 4. compute $m = c^d \pmod{N}$

Hao Chung (鍾豪)

Hence, we can say that RSA problem \leq_p factoring problem

Reduction in Security Proof

In cryptography, we often show the security of a scheme E by

$\underset{\text{(known difficulty)}}{\text{assumption}} \leq_p \text{breaking E}$

Hao Chung (鍾豪)

- 1. Big-Oh notation
- 2. Polynomial-Time Reduction
- 3. P v.s. NP

P and NP

Definition (P) (informal)

P is the set of problems that can be solved in polynomial time.

Definition (NP) (informal)

NP is the set of problems that can be checked in polynomial time given a solution.

Strictly speaking, P and NP only include decisional problems.

Hao Chung (鍾豪)

Definition (Primes problem)

Given an integer N, decide whether N is a prime or not.

In 2002, Manindra Agrawal, Neeraj Kayal and Nitin Saxena finally showed that Primes problem is in **P**.

If we can try the division up to \sqrt{N} , why Primes problem $\in \mathbf{P}$ doesn't hold trivially?

Key: the running time is counted in input size.

Hao Chung (鍾豪)

Definition (P)

P is the set of decisional problems that can be solved in time O(p(n)) for some polynomial p(n) in the input size n.

Definition (NP)

NP is the set of decisional problems that can be checked in time O(p(n)) for some polynomial p(n) in the input size n given a solution.

Hao Chung (鍾豪)