Computational Complexity

Hao Chung ((85)
July 18, 2019

Hao Chung (#2%) Computational Complexity


ChungHao



Self Introduction

SARERIEL

Al DEXON foundation BB ## 3L E

2016 EHIRIGERIZE L

2017 SRS Z2 B

i gE B : quantum cryptography, blockchain

Hao Chung (#2%) Computational Complexity



1. Big-Oh notation
2. Polynomial-Time Reduction
3. Pv.s. NP

Hao Chung (#2%) Computational Complexity



How to Compare Algorithms

Suppose we want to compute a function f(n)
« Algorithm 1 runs in 100,000n seconds

 Algorithm 2 runs in n* seconds

Which algorithm is better?
« Algorithm 2 runs faster if n < 100,000
« Algorithm 1 runs faster if n > 100,000

The ratio of running times goes to infinity

Hao Chung (#2%) Computational Complexity



How to Compare Algorithms

Suppose we want to compute a function g(n)
« Algorithm 1 runs in 20n seconds

» Algorithm 2 runs in 10n + 30 seconds

Which algorithm is better?
« Algorithm 2 runs faster whenn > 3

* However, it is only twice as fast whenn — oo

Hao Chung (#2%) Computational Complexity



Big-Oh

Definition (Big-Oh)

Let f(n) and g(n) be functions from R* to R*. Then,

O(f(n)) = {g(n):dc,nysuchthat 0 < g(n) < c: f(n) foralln > n,y}

y

In human language, g(n) € 0(f(n)) if
1. there exists a constant ¢ and a threshold n, such that

2. gn) <c-:f(n) for all n larger than n,

Remark: Sometimes we abuse the notation and write

g(m) = 0(f(n)); however, you should aware that 0(f(n)) is a set.

Hao Chung (#2%) Computational Complexity



Big-Oh Examples

Let f(n) = 10n + 30 and g(n) = 20n.
Prove that f(n) € O(g(n)) and g(n) € O(f(n)).

Proof:

Let c = 1,n, = 3. Then,

If n > ny, then f(n) = 10n 4+ 30 < 20n = cg(n).
Let ¢ = 2,n, = 1. Then,

If n > n,, then g(n) = 20n < 2(10n + 30) = cf (n).

Hao Chung (#2%) Computational Complexity



Big-Oh Examples

Let f(n) = 100,000n and g(n) = n?.
Prove that f(n) € 0(g(n)).

Hao Chung (#2%) Computational Complexity



Big-Oh Examples

Let f(n) = n* + 3n + 500.
Prove that f(n) € 0(n*).

Hao Chung (#2%) Computational Complexity



Properties of Big-Oh

Big Oh allows us to ignore constant factors:
- For any constant ¢, we have c - f(n) € 0(f(n)).

« For example, addition costs 1 iteration and division costs 32
iteration on x86 CPU .

But whether counting division as an elementary operation
doesn’t affect the time complexity.

Hao Chung (#2%) Computational Complexity



Properties of Big-Oh

Big Oh allows us to ignore lower order terms:
o If f(n) € O(Q(n)), then g(n) + f(n) € O(g(n)).
« O(n*+3n%+1) =0mn".

« If there are many parts in an algorithm, the most expensive
part will dominate.

Hao Chung (#2%) Computational Complexity



Big-Omega

Definition (Big-Omega)

Let f(n) and g(n) be functions from R* to R*. Then,

Q(f(m)) = {g(n): 3c,ny such that g(n) = ¢ - f(n) = 0 forall n > ny}

y

In human language, g(n) € Q(f(n)) if
1. there exists a constant ¢ and a threshold n, such that

2. gn)=c:fn) forall n larger than n,

Hao Chung (#2%) Computational Complexity



Big-Theta

Definition (Big-Theta)
Let f(n) and g(n) be functions from R* to R*. Then,

g(n): 3cq, ¢y, ng such that }
0<c;-f(n)<gn)<c,: f(n)foralln > n,

o(fm) = |

In human language, g(n) € 0(f(n)) if
1. there exists two constants ¢4, ¢, and a threshold ny such that

2. ¢;-f(n)<gn) <c,-f(n)forall nlarger than n,

Hao Chung (#2%) Computational Complexity



Examples

Example
Let f(n) = n* + 3n + 500.
Prove that f(n) € Q(n3logn) and f(n) € O(n*).

Example

Prove that logn € 0(n*), for all k > 0.

Example

Prove that n* € 0(n'°8™), for all k > 0.

Example
Let f(n) = % and g(n) = n1=% for some & € (0,1).

Prove that f(n) € O(g(n)) or g(n) € O(f(n)).

Hao Chung (#2%) Computational Complexity



2. Polynomial-Time Reduction

Hao Chung (#2%) Computational Complexity



Probabilistic Polynomial-Time (PPT)

In cryptography, we usually define the power of adversary as a
probabilistic polynomial-time (PPT) algorithm.

An algorithm is polynomial-time if its running time is 0(n*) for
some k.

An algorithm is probabilistic (or randomized) if we allow the
algorithm to “toss a coin” at each step.

Example (Primality-Test)

1. randomly choose a € {2,:--,N — 1}
2. if a¥ 71 # 1, output N is a composite
3. run step 1. and step 2. many times

4. if none of a¥~1 # 1in previous steps, output N is likely a prime

Y

Hao Chung (#2%) Computational Complexity



Polynomial-Time Reduction

Problem A is polynomial-time reducible to problem B if
1. given an oracle of B
2. A can be solved in polynomial-time

We write “1 =, B” to denote that A is polynomial-time reducible
to B.

In this case, we say that problem A
A is no harder than problem B.

Oracle
Query

Answer

Hao Chung (#2%) Computational Complexity



RSA Encryption

ALICE BOB
Message x =4 1. Choosep=3andqg=11
2. Computen=p *q=33
3. ®(n)=(3-1) *(11-1) =20
4. Choose e =3
= 1=
Koo = (33,3) 5. d=e’'=7mod 20
y=x°=4%=31 mod 33
y = 31

v

yd=317=4 =x mod 33

Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Hao Chung (#2%) Computational Complexity



RSA Problem

Definition (RSA problem)

Given N, e, c such that ¢ € Zy and ged(e, p(N)) = 1,
find m such that m® = ¢ (mod N).

Suppose we have a factoring oracle 0.
A

Then, we construct a RSA solver as follow.

1. queryO andget N =p-q

Oracle
2. compute ¢(N) = (p — 1)(q — 1)
3. compute d = e~ (mod ¢p(N)) —

4. compute m = c? (mod N)

Hence, we can say that RSA problem =, factoring problem

Hao Chung (#2%) Computational Complexity



Reduction in Security Proof

In cryptography, we often show the security of a scheme E by

assumption <

(known difficulty) breaking E

p

Hao Chung (#2%) Computational Complexity



1. Big-Oh notation
2. Polynomial-Time Reduction
3. Pv.s. NP

Hao Chung (#2%) Computational Complexity



Definition (P) (informal)

P is the set of problems that can be solved in polynomial time.

Definition (NP) (informal)

NP is the set of problems that can be checked in polynomial time
given a solution.

Strictly speaking, P and NP only include decisional problems.

Hao Chung (#2%) Computational Complexity



Is primality test in P?

Definition (Primes problem)

Given an integer N, decide whether N is a prime or not.

In 2002, Manindra Agrawal, Neeraj Kayal and Nitin Saxena finally
showed that Primes problem is in P.

If we can try the division up to VN, why Primes problem € P
doesn’t hold trivially?

Key: the running time is counted in input size. J

Hao Chung (#2%) Computational Complexity



P and NP

Definition (P)

P is the set of decisional problems that can be solved in time
0(p(n)) for some polynomial p(n) in the input size n.

Definition (NP)

NP is the set of decisional problems that can be checked in time
0(p(n)) for some polynomial p(n) in the input size n given a
solution.

Hao Chung (#2%) Computational Complexity



NP-Hard

NP-Complete

P=NP=
NP-Complete

Complexity

Computational Complexity

Hao Chung ((2%)



