
1/25Hao Chung (鍾豪) Computational Complexity

Hao Chung (鍾豪)

July 18, 2019

Computational Complexity

ChungHao




2/25Hao Chung (鍾豪) Computational Complexity

Self Introduction

台大電機碩士

前 DEXON foundation 區塊鏈研究員

2016 暑期密碼學課程學生

2017 暑期密碼學助教

研究興趣：quantum cryptography, blockchain



3/25Hao Chung (鍾豪) Computational Complexity

Outline

1. Big-Oh notation

2. Polynomial-Time Reduction

3. P v.s. NP
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How to Compare Algorithms

Suppose we want to compute a function 𝑓(𝑛)

• Algorithm 1 runs in 100,000𝑛 seconds 

• Algorithm 2 runs in 𝑛( seconds 

Which algorithm is better?

• Algorithm 2 runs faster if 𝑛 < 100,000	

• Algorithm 1 runs faster if 𝑛 > 100,000

The ratio of running times goes to infinity 
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How to Compare Algorithms

Suppose we want to compute a function 𝑔(𝑛)

• Algorithm 1 runs in 20𝑛 seconds 

• Algorithm 2 runs in 10𝑛 + 30	seconds 

Which algorithm is better?

• Algorithm 2 runs faster when 𝑛 > 3

• However, it is only twice as fast when 𝑛 → ∞
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Big-Oh

In human language, 𝑔 𝑛 ∈ 𝑂 𝑓 𝑛 if

1. there exists a constant 𝑐 and a threshold 𝑛5 such that 

2. 𝑔 𝑛 ≤ 𝑐 · 𝑓 𝑛 for all 𝑛 larger than 𝑛5

Remark: Sometimes we abuse the notation and write 

𝑔(𝑛) 	= 	𝑂 𝑓 𝑛 ; however, you should aware that 𝑂 𝑓 𝑛 is a set. 

Let	𝑓 𝑛 and	𝑔 𝑛 be	functions	from	ℝ; to ℝ;.	Then,	

𝑂 𝑓 𝑛 = 𝑔 𝑛 : ∃𝑐, 𝑛5	such	that	0 ≤ 𝑔 𝑛 ≤ 𝑐 · 𝑓 𝑛 	for	all	𝑛 > 𝑛5

Definition (Big-Oh)
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Big-Oh Examples

Proof:

Let 𝑐 = 1, 𝑛5 = 3. Then,  

If 𝑛 ≥ 𝑛5, then 𝑓 𝑛 = 10𝑛 + 30 ≤ 20𝑛 = 𝑐𝑔(𝑛).	

Let 𝑐 = 2, 𝑛5 = 1. Then,  

If 𝑛 ≥ 𝑛5, then 𝑔 𝑛 = 20𝑛 ≤ 2(10𝑛 + 30) = 𝑐𝑓(𝑛).	 

Let 𝑓 𝑛 = 10𝑛 + 30 and 𝑔 𝑛 = 20𝑛.

Prove that 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑔 𝑛 ∈ 𝑂 𝑓 𝑛 .

Example
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Big-Oh Examples

Let 𝑓 𝑛 = 100,000𝑛 and 𝑔 𝑛 = 𝑛(.

Prove that 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 .

Example
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Big-Oh Examples

Let 𝑓 𝑛 = 𝑛I + 3𝑛 + 500.

Prove that 𝑓 𝑛 ∈ 𝑂 𝑛I .

Example
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Properties of Big-Oh

Big Oh allows us to ignore constant factors: 

• For any constant 𝑐, we have 𝑐 · 𝑓 𝑛 ∈ 𝑂 𝑓 𝑛 . 

• For example, addition costs 1 iteration and division costs 32 
iteration on x86 CPU . 

But whether counting division as an elementary operation 
doesn’t affect the time complexity. 
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Properties of Big-Oh

Big Oh allows us to ignore lower order terms: 

• If 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 , then 𝑔 𝑛 + 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 .	

• 𝑂 𝑛I + 3𝑛( + 1 = 𝑂 𝑛I .	

• If there are many parts in an algorithm, the most expensive 
part will dominate. 
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Big-Omega

In human language, 𝑔 𝑛 ∈ Ω 𝑓 𝑛 if

1. there exists a constant 𝑐 and a threshold 𝑛5 such that 

2. 𝑔 𝑛 ≥ 𝑐 · 𝑓 𝑛 for all 𝑛 larger than 𝑛5

Let	𝑓 𝑛 and	𝑔 𝑛 be	functions	from	ℝ; to ℝ;.	Then,	

Ω 𝑓 𝑛 = 𝑔 𝑛 : ∃𝑐, 𝑛5	such	that	𝑔 𝑛 ≥ 𝑐 · 𝑓 𝑛 ≥ 0	for	all	𝑛 > 𝑛5

Definition (Big-Omega)
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Big-Theta

In human language, 𝑔 𝑛 ∈ Θ 𝑓 𝑛 if

1. there exists two constants 𝑐M, 𝑐( and a threshold 𝑛5 such that 

2. 𝑐M ⋅ 𝑓 𝑛 ≤ 𝑔 𝑛 ≤ 𝑐( · 𝑓 𝑛 	for all 𝑛 larger than 𝑛5

Let	𝑓 𝑛 and	𝑔 𝑛 be	functions	from	ℝ; to ℝ;.	Then,	

Θ 𝑓 𝑛 = 𝑔 𝑛 : ∃𝑐M, 𝑐(, 𝑛5	such	that	
0 ≤ 𝑐M ⋅ 𝑓 𝑛 ≤ 𝑔 𝑛 ≤ 𝑐( · 𝑓 𝑛 	for	all	𝑛 > 𝑛5

Definition (Big-Theta)



14/25Hao Chung (鍾豪) Computational Complexity

Examples

Let 𝑓 𝑛 = 𝑛I + 3𝑛 + 500.

Prove that 𝑓 𝑛 ∈ Ω 𝑛O log 𝑛 and 𝑓 𝑛 ∈ Θ 𝑛I .

Example

Prove that log 𝑛 ∈ 𝑂 𝑛Q , for all 𝑘 > 0.

Example

Prove that 𝑛Q ∈ 𝑂 𝑛STU V , for all 𝑘 > 0.

Example

Let 𝑓 𝑛 = V
STU V

and 𝑔 𝑛 = 𝑛MWX for some 𝛿 ∈ 0,1 .

Prove that 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 or 𝑔 𝑛 ∈ 𝑂 𝑓 𝑛 .

Example
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Outline

1. Big-Oh notation

2. Polynomial-Time Reduction

3. P v.s. NP
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Probabilistic Polynomial-Time (PPT)

In cryptography, we usually define the power of adversary as a 
probabilistic polynomial-time (PPT) algorithm. 

An algorithm is polynomial-time if its running time is 𝑂 𝑛Q for 
some 𝑘. 

An algorithm is probabilistic (or randomized) if we allow the 
algorithm to “toss a coin” at each step. 

1. randomly choose 𝑎 ∈ 2,⋯ ,𝑁 − 1

2. if 𝑎^WM ≠ 1, output	𝑁	is a composite

3. run step 1. and step 2. many times

4. if none of 𝑎^WM ≠ 1	in previous steps, output 𝑁 is likely a prime 

Example (Primality-Test)
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Polynomial-Time Reduction

Problem 𝒜 is polynomial-time reducible to problem ℬ if 

1. given an oracle of ℬ

2. 𝒜 can be solved in polynomial-time 

We write “𝒜 ≤b ℬ” to denote that 𝒜 is polynomial-time reducible 
to ℬ.

In this case, we say that problem
𝒜 is no harder than problem ℬ.
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RSA Encryption



19/25Hao Chung (鍾豪) Computational Complexity

RSA Problem

Given 𝑁, 𝑒, 𝑐 such that 𝑐 ∈ ℤ^ and gcd 𝑒, 𝜙 𝑁 = 1,

find 𝑚 such that 𝑚h ≡ 𝑐	 𝑚𝑜𝑑	𝑁 .

Definition (RSA problem)

Suppose we have a factoring oracle 𝒪.

Then, we construct a RSA solver as follow.

1. query 𝒪 and get 𝑁 = 𝑝 ⋅ 𝑞

2. compute 𝜙 𝑁 = 𝑝 − 1 𝑞 − 1

3. compute 𝑑 = 𝑒WM	 𝑚𝑜𝑑	𝜙 𝑁

4. compute 𝑚 = 𝑐o	 𝑚𝑜𝑑	𝑁

Hence, we can say that RSA problem ≤b factoring problem
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Reduction in Security Proof

In cryptography, we often show the security of a scheme E by

assumption
(known difficulty) ≤b breaking E
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Outline

1. Big-Oh notation

2. Polynomial-Time Reduction

3. P v.s. NP
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P and NP

P is the set of problems that can be solved in polynomial time.

Definition (P) (informal)

NP is the set of problems that can be checked in polynomial time
given a solution.

Definition (NP) (informal)

Strictly speaking, P and NP only include decisional problems.
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Is primality test in P?

In 2002, Manindra Agrawal, Neeraj Kayal and Nitin Saxena finally
showed that Primes problem is in P.

If we can try the division up to 𝑁� , why Primes problem ∈ P
doesn’t hold trivially?

Given an integer 𝑁, decide whether 𝑁 is a prime or not.

Definition (Primes problem)

Key: the running time is counted in input size.
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P and NP

P is the set of decisional problems that can be solved in time
𝑂 𝑝 𝑛 for some polynomial 𝑝(𝑛) in the input size 𝑛.

Definition (P)

NP is the set of decisional problems that can be checked in time
𝑂 𝑝 𝑛 for some polynomial 𝑝(𝑛) in the input size 𝑛 given a
solution.

Definition (NP)
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