
Zero Knowledge Salon
Po-Chun Kuo and Hao Chung

Oct 31, 2018

Outline

1. Intro to zero knowledge

2. Zcash

3. Zero set

4. Bullet proof

5. zk-SNARK

Zero Knowledge

Prover wants to convince Verifier that he/she knows a statement x
without revealing further information.

P V

y

I know an x such that Hash(x) = y

Example
Problem setup:

• Two characters: Prover and Verifier (verifier is blind)

• They have two balls: the one is blue, the other is green

• The two balls are all identical except the colors

• Prover wants to show that “I know the fact that they are in
different color.”

Proof system:

1. Verifier places two balls behind his back.

2. Verifier takes one of the balls and displays it.

3. Verifier places the ball behind his back.

4. Verifier switch the ball with probability 50% and displays the

ball again. Ask “Do I switch the ball?”

Zero Knowledge Proof

A zero knowledge proof should satisfy three conditions:

• Completeness: if the statement is true, verifier should accept the

proof

• Soundness: if the statement is false, it should be infeasible that

verifier accept the proof

• Zero knowledge: Verifier should not learn any information beyond

that the statement is true.

The Privacy in the cryptocurrency

In cryptocurrency system, there are two properties that can be
protected:

1. The identity of the sender and the receiver

2. The amount of the transaction

zk-SNARK

zk-SNARK
Knowledge

Statement

Proof for the statement

zk-SNARK

zk-SNARK
x

y, Hash

Proof for
“knowing x s.t. y = Hash(x)”

For example, Alice wants to show that she knows x such that y = Hash(x).

zk-SNARK

zk-SNARK
(c1,c2,c3,c4)

Proof for
“knowing c1,c2,c3,c4
satisfies the circuit”

For example, Alice wants to show that she knows an assignment

(c1,c2,…,cn) satisfies the circuit.

Four types of modes

Zcash

• In Bitcoin system, the inputs of a transaction are many UTXOs
(unspent transaction outputs).

• In Zcash, an UTXO can be thought as an unspent note:

• In order to protect the privacy, the note is published in “hash”
format

Note1 = (pk1, v1, r1)

C1 = Hash(Note1)

v: amount of cash
r: randomness of the note

Shielding

1. Alice creates a new note .

2. Alice announces the commitment of the note

Ａ ?
Note1

Suppose Alice has a set of UTXOs whose balance sum to

Now Alice wants to “mint” a black coin.

Note1 = (pk1, v1, r1)
C1 = Hash(Note1)

(pk0, sk0) (pk1, sk1)

(Private channel)

v

Anonymity pool
• To enhance privacy, Alice can mint many “coins” in a shielding

transaction.

• For verifying the transaction, Alice gives a proof for the sum of all

the coins is

• All the miners maintain a table of “commitments” and “nullifiers,”

which form an anonymity pool.

Commitment Nullifier

C1 = Hash(Note1)

v

⋮

Private

1. Alice creates a new note and sends it to Bob.

2. Alice announces the commitment of the note

3. In order to make sure Note1 will not be spent again, Alice need to

“nullify” Note1. Alice announces

Ａ Ｂ
Note2

What if Alice wants to send her note to Bob?

Note2 = (pk2, v2, r2)
C2 = Hash(Note2)

(pk1, sk1) (pk2, sk2)

N1 = Hash(r1)

(Private channel)

Zcash
• As the blockchain grows, miners and users maintain a table of

“commitments” and “nullifiers."

Commitment Nullifier

C1 = Hash(Note1)

C2 = Hash(Note2)

C3 = Hash(Note3)

C4 = Hash(Note4)

N1 = Hash(r3)

N2 = Hash(r2)

⋮

⋮

How do miners verify the transaction?

To make the transaction valid, Alice gives a proof for the following
statements:

1. Alice knows pk1, r1, v1 such that Hash(pk1, r1, v1) exists in the

table.

2. Alice knows sk1 corresponding to pk1.

3. The hash of r1 is N1.

4. The input value v1 equals to output value v2.

• How do miners know Note1 is a valid note?

 (miners only see the commitments)

• How do miners know Note1 belongs to Alice?

Note that miners cannot know which coin is nullified!!!

Deshielding

1. Alice creates a new transparent address

2. To “nullify” Note1, Alice announces

Ａ?

Deshielding is very similar

Suppose Alice wants to transfer Note1 to her transparent address

(pk0, sk0) (pk3, sk3)

(pk3, sk3)

N1 = Hash(r1)
The verification of the deshielding transaction is the same as private
transaction.

Construct Zero-Knowledge

• ZK Set

• Bulletproof

• ZK-SNARK

• ZK-START

• Completeness

• Soundness

• Zero-knowledge

• Properties to be practical

• Succinct: it is efficient to verify a proof

• Public verifiable: anyone can verify the proof

• non-interactive: no interaction when reading the proof

Zero-Knowledge

++
+

e.g. compile C code into TinyRAM code by GCC complier 
and generate the circuit by the reduction in zk-SNARK [BCGTV’13]
e.g. https://github.com/akosba/jsnark

Proof that you execute the program
without leaking any information about input

Code
Arithmetic Circuit Zero Knowledge Proof

Zero-knowledge Set
• Problem

• Give a database S = {(xi,D(xi))}i, when querying x

• If x in S, return (D(x), proof)

• If x not in S, return (no, proof)

• Each proof leaks no information about S except x in S or not

• Prover cannot lie (both false positive/negative)

• Prover convinces the Verifier by the proof

• Why is this problem hard / non-trivial ?

• Can Merkle tree directly adapted on?

• We introduce the method from

• S. Micali, M. Rabin, J. Kilian

• “Zero-knowledge sets.”

• IEEE FOCS 2003

h

h h

h(y0 h(y1) h(y2)

00,y0 01,y1 10,y2

Commitment of database

h(0)

Zero-knowledge Set

Discrete logarithm Problem
• Given a group G = <g> and y = gx

• Hard to compute x

• logg y is hard to compute in discrete space

• e.g. G=(mul, Z101), g = 2, y=36, x=?

Pedersen Commitment
• Given two independent generators g, h of a group G

• Pedersen Commitment H(x, r) = gxhr

• e.g. G=(mul, Z11), g = 2, h = 6, H(3,4) = 6

• Perfect hiding / computational blinding

c, h

c, h c, h

c, h c, h c, h

c, h c, h c, h c, h

c, h

c, hc, h

000,y0 001,y1 011,y2 110,y3

c, h

110,y3

c, h

x = 110
D(x) = y
c = gy(h110)r110

h110 = he110

x = 10
c = g0(h10)r10

h10 = ge10

cx, hx x
m = H(cx0,hx0,cx1,hx1)
c = gm(hx)rx

hx = hexcx0, hx0 cx1, hx1

Data

Frontier

Node

c, h

c, h c, h

c, h c, h c, h

c, h c, h c, h c, h

c, h

c, hc, h

000,y0 001,y1 011,y2 110,y3

c, h

110,y3

c, hx = 110
D(x) = y
c = gy(h110)r110

h110 = he110

x = 10
c = g0(h10)r10

h10 = ge10

cx, hx x
m = H(cx0,hx0,cx1,hx1)
c = gm(hx)rx

hx = hexcx0, hx0 cx1, hx1

Data Frontier
Node

e, r

e, r e, r

e, r e, r e, r

e, r e, r e, r e, r e, re, r

Commitment of database

e, r

Prover’s Secret

c, h

c, h c, h

c, h c, h c, h

c, h c, h c, h c, h

c, h

c, hc, h

000,y0 001,y1 011,y2 110,y3

c, h

110,y3

c, hx = 110
D(x) = y
c = gy(h110)r110

h110 = he110

x = 10
c = g0(h10)r10

h10 = ge10

cx, hx x
m = H(cx0,hx0,cx1,hx1)
c = gm(hx)rx

hx = hexcx0, hx0 cx1, hx1

Data Frontier
Node

e, r

e, r e, r

e, r e, r e, r

e, r e, r e, r e, r e, re, r

Commitment of database

e, r

Prover’s Secret x = 110

x = 001

c, h

c, h c, h

c, h c, h c, h

c, h c, h c, h c, h

c, h

c, hc, h

000,y0 001,y1 011,y2 110,y3

x = 100
c = g0(h100)r100

h100 = ge100

cx, hx
x
m = H(cx0,hx0,cx1,hx1)
cx = gm(hx)rx

hx = gexcx0, hx0 cx1, hx1

Frontier

e, r

e, r e, r

e, r e, r e, r

e, r e, r e, r e, r e, re, r

Commitment of database

e, r

Prover’s Secret x = 100

x = 101
c = g0(h10)r10

h10 = ge10

This proof leaks information of 101 !!

c, h

c, h

c, h

c, h

c, h

c, h

110,y3

x = 100
c100 = g0(h100)r100

h100 = ge100

cx, hx

x = 10
m = H(c100,h100,c101,h101)
c10 = g0(h10)r10

h10 = ge10
cx0, hx0 cx1, hx1

Frontier

e, r

e, r

e, r

e, r e, r

Commitment of database

e, r

Prover’s Secret
x = 100

x = 101
c101 = g0(h101)r101

h101 = ge101

cx = g0(hx)rx = gm(hx)r’x

r’x=(exrx-m)/ex

e, r’

e, r e, r
cx0, hx0 cx1, hx1

Bulletproof

• Core technique - improving range proof

• Zero knowledge proof for v in [0,2k-1]

• Improve range proof

• Bulletproofs: Short Proofs for Confidential Transactions and More

• Benedikt B¨unz, Jonathan Bootle, Dan Boneh, Andrew Poelstra,

Pieter Wuille, and Greg Maxwell

• IEEE S&P 2018

Notation
• Let g = (g1,g2,…,gn) be the n-dimensional vector of generators of

group G

• Given x = (x1,x2,…,xn)

• Define gx = g1x1g2x2…gnxn

Inner-Product Argument

• Goal: given two independent generator g, h in Gn and gahb,
c=<a,b> in Zp, how could the prover convince a verifier that prover
knows a, b in Zpn

• Not zero-knowledge

• Trivial way: send a, b to verifier

• How to reduce the size of proof?

Verifiable Function
• Alice knows F(x) = a0 + a1x

• Bob wants to know F(b)

• How could Bob be convinced that Alice sent him F(b)  

without revealing F?

F(x) = a0 + a1x

Public: ga0,ga1

a0 + a1b

ga0+a1b

(ga0)(ga1)b
=?

Challenge b

• We prove that the commitment P=gahbu<a,b> that the prover can
convince the verifier in lower size of proof.

• g = g1g2, g1 is former n/2 dimension of g, g2 is later n/2 dimension of g

a, b

Lx2PRx-2

g1x-1a’g2xa’h1xb’h2x-1b’ u<a’ ,b’>

L = g2a1 h1b2 u<a1 ,b2>

R = g1a2 h2b1 u<a2 ,b1>

Lx2 = g2x2a1 h1x2b2 ux2<a1 ,b2>

P = g1a1 g2a2 h1b1 h2b2 u<a1 ,b1 >+<a2 ,b2 >

Rx-2 = g1x-2a2 h2x-2b1 ux-2<a2 ,b1>

 g1x-1a’ g2xa’ h1xb’ h2x-1b’ u<a’ ,b’>

a’ = xa1 + x-1a2
b’ = x-1b1 + xb2

Challenge x

• Is this completeness?

• Is this soundness?

• Is this zero-knowledge?

• We prove that the commitment P=gahbu<a,b> that the prover can
convince the verifier in lower size of proof.

• g = g1g2, g1 is former n/2 dimension of g, g2 is later n/2 dimension of g

a, b a’, b’

L
R

L’
R’

a’’, b’’

L’’
R’’

a, b
P=gahbu<a,b>

P’=(g1x-1g2x)a’(h1x-1h2x)b’u<a’,b’ >

Total 2log(n) Group elements and 2 Zp elements  
instead of 2n Zp elements

……

Inner-Product Range Proof
• We want to prove v in [0,2n-1] without leaking any information about v except the range size.

• Given a commitment V=hrgv, we want to prove v in [0,2n-1]

• We first write down the mathematical description on the range condition

y, z

A, S

x

T1 ,T2

gt(x) = gz2v gδ gxt1 gx2t2

hτx = hz2r hxτ1 hx2τ2

 = Vz2
 gδ T1

x T2
x2

gl(x) = gaL gxsL g-z1n

(h’)r(x) = haR hxsR (h’)zyn+z22n

hµ = hα hxρ
 = A Sx g-z1n (h’)zyn+z22n

Pinocchio Protocol
• Bryan Parno, Jon Howell, Craig Gentry, Mariana Raykova

• Pinocchio: Nearly Practical Verifiable Computation

• IEEE S&P 2013

• Describe a correct input/output for an arithmetic circuit by an equation

• Verifier checks the equality of the equation  

= Prover correctly computes the circuit

+ +
+

c1 c2 c3 c4

c6

c5

l1 l2 l3

o5

r5

r4

o6

l = {li }

r = {ri }

o = {oi }

T(x)

(c1, c2 , c3 , c4 , c5 , c6) = (*,*,*,*,*,*)

L(x)

R(x)

O(x)

P(x) = L(x)R(x)-O(x)  

L(x)R(x)-O(x) =? H(x) T(x)
H(x) = P(x)/T(x)

V1) define target function T(x)

V2) define circuit l, r, o

P1) compute assignment {ci}

P2) compute circuit formula L(x), R(x), O(x)

P3) compute response polynomial H(x)

V3) verify L(x), R(x), O(x), H(x)

+ +
+

c1 c2 c3 c4

c6

c5

l1 l2 l3

o5

r5

r4

o6

(c1+c2)c3c4=c6l3 = r4 = o5 = 2-x

l1 = l2 = r5 = o6 = x-1

l = {l1 =x-1, l2 =x-1, l3 = 2-x}

r = {r4 =2-x, r5 = x-1}

o = {o5 =2-x, o6 = x-1}

T(x) = (x-1)(x-2)

c3c4=c5
(c1, c2 , c3 , c4 , c5 , c6) = (2,2,3,1,3,12)

L(x) = 2(x-1)+2(x-1)+3(2-x) = x+2

R(x) = (x-1)+3(x-1) = 2x-1

O(x) = 3(x-1)+12(x-1) = 9x-6

P(x) = L(x)R(x)-O(x)  
 = 2x2-3x+1 = 2(x-1)(x-2)

L(x)R(x)-O(x) =? H(x) T(x)
H(x) = P(x)/T(x)= 2

V1) define target function T(x)

V2) define circuit l, r, o P1) compute assignment {ci}

P2) compute circuit formula L(x), R(x), O(x)

P3) compute response polynomial H(x)

V3) verify L(x), R(x), O(x), H(x)

+ +
+

c1 c2 c3 c4

c6

c5

l1 l2 l3

o5

r5

r4

o6

l = {gli (s)}

r = {gri (s) }

o = {goi(s)}

T(x)

(c1, c2 , c3 , c4 , c5 , c6) = (*,*,*,*,*,*)

gL(s)=Π(gli (s))ci

H(x) = P(x)/T(x) = Σ hixi

V1) define target function T(x)

V2) pick a random s (challenge),  
V3) define circuit l, r, o

P1) compute assignment {ci}

P2) compute circuit formula L(x), R(x), O(x)

P3) compute response polynomial H(x)

V3) verify L(x), R(x), O(x), H(x)

s = {gsi
 } gR(s)=Π(gri (s))ci

gO(s)=Π(goi (s))ci

gH(s)=Π(gsi
)hi

P4) send the proof (gL(s),gR(s),gO(s),gH(s)) to Verifier

e(gL(s),gR(s)) / e(gO(s),g) =? e(gH(s),gT(s))
e(g,g)L(s)R(s)-O(s) =? e(g,g)H(s)T(s)

• Is this zero-knowledge?

• No

• mask the secret!

• How to make sure the Prover use the commitment from verifier?

• By α-pair commitment

• Alice send A1 = gx, A2 = gxα to Bob

• Bob compute B1 = gxb, B2 = gxαb and send to Alice

• Alice check B1α =? B2

Fiat-Shamir Transform
From Interactive Proof to Non-Interactive Proof

• convert a protocol into a non-interactive protocol

• secure

• full zero-knowledge

• in the random oracle model

• Fiat-Shamir heuristic

• E.g.

• y = H(A,S)

• z = H(A,S, y)

y, z

A, S

x

T1 ,T2

Performance

Bulletproof

Proof size

Computation timing Computation timing for Pedersen Hash

zk-SNARK & zk-START

To prove a 128bit secure Hash…
Proving time Verifying time Proof Size

zk-SNARK 2 mins 0.005 sec 288 bytes

zk-STARK 40 sec 0.08 sec 120 KB

Bulletproof 0.3 sec 0.02 sec 1 KB

Take away

